Artículo

Acuna, G.P.; Bucher, M.; Stein, I.H.; Steinhauer, C.; Kuzyk, A.; Holzmeister, P.; Schreiber, R.; Moroz, A.; Stefani, F.D.; Liedl, T.; Simmel, F.C.; Tinnefeld, P. "Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami" (2012) ACS Nano. 6(4):3189-3195
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the distance-dependent quenching of fluorescence due to a metallic nanoparticle in proximity of a fluorophore. In our single-molecule measurements, we achieve excellent control over structure and stoichiometry by using self-assembled DNA structures (DNA origami) as a breadboard where both the fluorophore and the 10 nm metallic nanoparticle are positioned with nanometer precision. The single-molecule spectroscopy method employed here reports on the co-localization of particle and dye, while fluorescence lifetime imaging is used to directly obtain the correlation of intensity and fluorescence lifetime for varying particle to dye distances. Our data can be well explained by exact calculations that include dipole-dipole orientation and distances. Fitting with a more practical model for nanosurface energy transfer yields 10.4 nm as the characteristic distance of 50% energy transfer. The use of DNA nanotechnology together with minimal sample usage by attaching the particles to the DNA origami directly on the microscope coverslip paves the way for more complex experiments exploiting dye-nanoparticle interactions. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami
Autor:Acuna, G.P.; Bucher, M.; Stein, I.H.; Steinhauer, C.; Kuzyk, A.; Holzmeister, P.; Schreiber, R.; Moroz, A.; Stefani, F.D.; Liedl, T.; Simmel, F.C.; Tinnefeld, P.
Filiación:Physical and Theoretical Chemistry-NanoBioScience, TU Braunschweig, Hans-Sommer-Strasse 10, 38106 Braunschweig, Germany
Angewandte Physik-Biophysik, Ludwig-Maximilians-Universität, Amalienstrasse 54, 80799 Munich, Germany
Physik Department, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
Fakultät für Physik and Center for Nanoscience, Ludwig Maximilians Universität, Geschwister-Scholl-Platz, 80539 München, Germany
Wave-scattering.com, Argentina
Departamento de Física, Insituto de Física de Buenos Aires (IFIBA CONICET), Ciudad Universitaria Pab. 1, 1428 Buenos Aires, Argentina
Palabras clave:DNA origami; DNA self-assembly; fluorescence quenching; gold nanoparticles; single-molecule fluorescence; Dna origamis; DNA self-assembly; Fluorescence quenching; Gold Nanoparticles; Single-molecule; DNA; Energy transfer; Fluorescence; Metal nanoparticles; Molecules; Quenching; Spectroscopic analysis; Stoichiometry; Fluorophores; DNA; fluorescent dye; gold; metal nanoparticle; article; chemistry; methodology; nanotechnology; optics; spectrofluorometry; DNA; Fluorescent Dyes; Gold; Metal Nanoparticles; Nanotechnology; Optics and Photonics; Spectrometry, Fluorescence
Año:2012
Volumen:6
Número:4
Página de inicio:3189
Página de fin:3195
DOI: http://dx.doi.org/10.1021/nn2050483
Título revista:ACS Nano
Título revista abreviado:ACS Nano
ISSN:19360851
CAS:DNA, 9007-49-2; gold, 7440-57-5; DNA, 9007-49-2; Fluorescent Dyes; Gold, 7440-57-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19360851_v6_n4_p3189_Acuna

Referencias:

  • Seeman, N.C., Nanomaterials Based on DNA (2010) Annu. Rev. Biochem., 79, pp. 65-87
  • Sharma, J., Chhabra, R., Liu, Y., Ke, Y., Yan, H., DNA-Templated Self-Assembly of Two-Dimensional and Periodical Gold Nanoparticle Arrays (2006) Angew. Chem., 45, pp. 730-735
  • Zheng, J., Constantinou, P.E., Micheel, C., Alivisatos, A.P., Kiehl, R.A., Seeman, N.C., Two-Dimensional Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs (2006) Nano Lett., 6, pp. 1502-1504
  • Aldaye, F.A., Palmer, A.L., Sleiman, H.F., Assembling Materials with DNA as the Guide (2008) Science, 321, pp. 1795-1799
  • Rothemund, P.W., Folding DNA to Create Nanoscale Shapes and Patterns (2006) Nature, 440, pp. 297-302
  • Hung, A.M., Micheel, C.M., Bozano, L.D., Osterbur, L.W., Wallraff, G.M., Cha, J.N., Large-Area Spatially Ordered Arrays of Gold Nanoparticles Directed by Lithographically Confined DNA Origami (2010) Nat. Nanotechnol., 5, pp. 121-126
  • Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R.N., Bokor, J., Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami (2010) J. Am. Chem. Soc., 132, pp. 3248-3249
  • Pal, S., Deng, Z.T., Ding, B.Q., Yan, H., Liu, Y., DNA-Origami-Directed Self-Assembly of Discrete Silver-Nanoparticle Architectures (2010) Angew. Chem., Int. Ed., 49, pp. 2700-2704
  • Pal, S., Deng, Z., Wang, H., Zou, S., Liu, Y., Yan, H., DNA Directed Self-Assembly of Anisotropic Plasmonic Nanostructures (2011) J. Am. Chem. Soc., 133, pp. 17606-17609
  • Kuzyk, A., Schreiber, R., Fan, Z., Pardatscher, G., Roller, E., Högele, A., Simmel, F., Liedl, T., DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response (2012) Nature, 483, pp. 311-314
  • Stein, I.H., Schuller, V., Bohm, P., Tinnefeld, P., Liedl, T., Single-Molecule Fret Ruler Based on Rigid DNA Origami Blocks (2011) ChemPhysChem, 12, pp. 689-695
  • Steinhauer, C., Jungmann, R., Sobey, T.L., Simmel, F.C., Tinnefeld, P., DNA Origami as a Nanoscopic Ruler for Super-Resolution Microscopy (2009) Angew. Chem., Int. Ed., 48, pp. 8870-8873
  • Dulkeith, E., Ringler, M., Klar, T.A., Feldmann, J., Munoz Javier, A., Parak, W.J., Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression (2005) Nano Lett., 5, pp. 585-589
  • Dulkeith, E., Morteani, A.C., Niedereichholz, T., Klar, T.A., Feldmann, J., Levi, S.A., Van Veggel, F.C., Gittins, D.I., Fluorescence Quenching of Dye Molecules near Gold Nanoparticles: Radiative and Nonradiative Effects (2002) Phys. Rev. Lett., 89, p. 203002
  • Lakowicz, J.R., Yi, F., Modification of Single Molecule Fluorescence near Metallic Nanostructures (2009) Laser Photonics Rev., 3, pp. 221-232
  • Gersten, J., Nitzan, A., Spectroscopic Properties of Molecules Interacting with Small Dielectric Particles (1981) J. Chem. Phys., 75, pp. 1139-1152
  • Chew, H., Radiation and Lifetimes of Atoms inside Dielectric Particles (1988) Phys. Rev. A, 38, pp. 3410-3416
  • Anger, P., Bharadwaj, P., Novotny, L., Enhancement and Quenching of Single-Molecule Fluorescence (2006) Phys. Rev. Lett., 96, p. 113002
  • Kuhn, S., Hakanson, U., Rogobete, L., Sandoghdar, V., Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna (2006) Phys. Rev. Lett., 97, p. 017402
  • Mirkin, C.A., Letsinger, R.L., Mucic, R.C., Storhoff, J.J., A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials (1996) Nature, 382, pp. 607-609
  • Seelig, J., Leslie, K., Renn, A., Kühn, S., Jacobsen, V., Van De Corput, M., Wyman, C., Sandoghdar, V., Nanoparticle-Induced Fluorescence Lifetime Modification as Nanoscopic Ruler: Demonstration at the Single Molecule Level (2007) Nano Lett., 7, pp. 685-689
  • Chhabra, R., Sharma, J., Wang, H., Zou, S., Lin, S., Yan, H., Lindsay, S., Liu, Y., Distance-Dependent Interactions between Gold Nanoparticles and Fluorescent Molecules with DNA as Tunable Spacers (2009) Nanotechnology, 20, p. 485201
  • Wiggins, P.A., Van Der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., Dekker, C., Nelson, P.C., High Flexibility of DNA on Short Length Scales Probed by Atomic Force Microscopy (2006) Nat. Nanotechnol., 1, pp. 137-141
  • Zanchet, D., Micheel, C.M., Parak, W.J., Gerion, D., Alivisatos, A.P., Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates (2001) Nano Lett., 1, pp. 32-35
  • Zhang, J., Fu, Y., Chowdhury, M.H., Lakowicz, J.R., Metal-Enhanced Single-Molecule Fluorescence on Silver Particle Monomer and Dimer: Coupling Effect between Metal Particles (2007) Nano Lett., 7, pp. 2101-2107
  • Ruppin, R.J., Decay of an Excited Molecule near a Small Metal Sphere (1982) J. Chem. Phys., 76, pp. 1681-1684
  • Ross, J., Buschkamp, P., Fetting, D., Donnermeyer, A., Roth, C.M., Tinnefeld, P., Multicolor Single-Molecule Spectroscopy with Alternating Laser Excitation for the Investigation of Interactions and Dynamics (2007) J. Phys. Chem. B, 111, pp. 321-326
  • Tinnefeld, P., Herten, D.P., Sauer, M., Photophysical Dynamics of Single Molecules Studied by Spectrally-Resolved Fluorescence Lifetime Imaging Microscopy (SFLIM) (2001) J. Phys. Chem. A, 105, pp. 7989-8003
  • Bharadwaj, P., Novotny, L., Spectral Dependence of Single Molecule Fluorescence Enhancement (2007) Opt. Express, 15, pp. 14266-14274
  • Moroz, A., Superconvergent Representation of the Gersten-Nitzan and Ford-Weber Nonradiative Rates (2011) J. Phys. Chem. C, 115, pp. 19546-19556
  • Jennings, T.L., Singh, M.P., Strouse, G.F., Fluorescent Lifetime Quenching near D = 1.5 nm Gold Nanoparticles: Probing Nset Validity (2006) J. Am. Chem. Soc., 128, pp. 5462-5467
  • Yun, C.S., Javier, A., Jennings, T., Fisher, M., Hira, S., Peterson, S., Hopkins, B., Strouse, G.F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the Fret Barrier (2005) J. Am. Chem. Soc., 127, pp. 3115-3119
  • Persson, B.N.J., Lang, N.D., Electron-Hole-Pair Quenching of Excited States near a Metal (1982) Phys. Rev. B, 26, pp. 5409-5415
  • Wang, W., Chen, C., Qian, M., Zhao, X.S., Aptamer Biosensor for Protein Detection Using Gold Nanoparticles (2006) Anal. Biochem., 373, pp. 213-219
  • Mayilo, S., Ehlers, B., Wunderlich, M., Klar, T.A., Josel, H.P., Heindl, D., Nichtl, A., Feldmann, J., Competitive Homogeneous Digoxigenin Immunoassay Based on Fluorescence Quenching by Gold Nanoparticles (2009) Anal. Chim. Acta, 646, pp. 119-122
  • Mayilo, S., Kloster, M.A., Wunderlich, M., Lutich, A., Klar, T.A., Nichtl, A., Kurzinger, K., Feldmann, J., Long-Range Fluorescence Quenching by Gold Nanoparticles in a Sandwich Immunoassay for Cardiac Troponin T (2009) Nano Lett., 9, pp. 4558-4563
  • Gu, H.Z., Chao, J., Xiao, S.J., Seeman, N.C., A Proximity-Based Programmable DNA Nanoscale Assembly Line (2010) Nature, 465, pp. 202-U286
  • Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Walter, N.G., Molecular Robots Guided by Prescriptive Landscapes (2010) Nature, 465, pp. 206-210
  • http://www.wave-scattering.com/chew.f, A Fortran F77 source code for the CHEW calculation can be downloaded from; Stein, I.H., Steinhauer, C., Tinnefeld, P., Single-Molecule Four-Color FRET Visualizes Energy-Transfer Paths on DNA Origami (2011) J. Am. Chem. Soc., 133, pp. 4193-4195

Citas:

---------- APA ----------
Acuna, G.P., Bucher, M., Stein, I.H., Steinhauer, C., Kuzyk, A., Holzmeister, P., Schreiber, R.,..., Tinnefeld, P. (2012) . Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano, 6(4), 3189-3195.
http://dx.doi.org/10.1021/nn2050483
---------- CHICAGO ----------
Acuna, G.P., Bucher, M., Stein, I.H., Steinhauer, C., Kuzyk, A., Holzmeister, P., et al. "Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami" . ACS Nano 6, no. 4 (2012) : 3189-3195.
http://dx.doi.org/10.1021/nn2050483
---------- MLA ----------
Acuna, G.P., Bucher, M., Stein, I.H., Steinhauer, C., Kuzyk, A., Holzmeister, P., et al. "Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami" . ACS Nano, vol. 6, no. 4, 2012, pp. 3189-3195.
http://dx.doi.org/10.1021/nn2050483
---------- VANCOUVER ----------
Acuna, G.P., Bucher, M., Stein, I.H., Steinhauer, C., Kuzyk, A., Holzmeister, P., et al. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano. 2012;6(4):3189-3195.
http://dx.doi.org/10.1021/nn2050483