Artículo

Gargiulo, J.; Violi, I.L.; Cerrota, S.; Chvátal, L.; Cortés, E.; Perassi, E.M.; Diaz, F.; Zemánek, P.; Stefani, F.D. "Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles" (2017) ACS Nano. 11(10):9678-9688
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Optical printing is a powerful all-optical method that allows the incorporation of colloidal nanoparticles (NPs) onto substrates with nanometric precision. Here, we present a systematic study of the accuracy of optical printing of Au and Ag NPs, using different laser powers and wavelengths. When using light of wavelength tuned to the localized surface plasmon resonance (LSPR) of the NPs, the accuracy improves as the laser power is reduced, whereas for wavelengths off the LSPR, the accuracy is independent of the laser power. Complementary studies of the printing times of the NPs reveal the roles of Brownian and deterministic motion. Calculated trajectories of the NPs, taking into account the interplay between optical forces, electrostatic forces, and Brownian motion, allowed us to rationalize the experimental results and gain a detailed insight into the mechanism of the printing process. A clear framework is laid out for future optimizations of optical printing and optical manipulation of NPs near substrates. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles
Autor:Gargiulo, J.; Violi, I.L.; Cerrota, S.; Chvátal, L.; Cortés, E.; Perassi, E.M.; Diaz, F.; Zemánek, P.; Stefani, F.D.
Filiación:Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad de Buenos Aires, C1425FQD, Argentina
Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, Brno, 612 64, Czech Republic
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad de Buenos Aires, C1428EAH, Argentina
Palabras clave:colloidal patterning; nanofabrication; optical forces; optical tweezers; Brownian movement; Laser optics; Nanotechnology; Silver nanoparticles; Surface plasmon resonance; All optical; Colloidal nanoparticles; Colloidal patterning; Localized surface plasmon resonance; Optical force; Optical manipulation; Printing process; Systematic study; Optical tweezers
Año:2017
Volumen:11
Número:10
Página de inicio:9678
Página de fin:9688
DOI: http://dx.doi.org/10.1021/acsnano.7b04136
Título revista:ACS Nano
Título revista abreviado:ACS Nano
ISSN:19360851
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19360851_v11_n10_p9678_Gargiulo

Referencias:

  • Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications (2005) J. Phys. Chem. B, 109, pp. 13857-13870
  • Sau, T.K., Rogach, A.L., Nonspherical Noble Metal Nanoparticles: Colloid-Chemical Synthesis and Morphology Control (2010) Adv. Mater., 22, pp. 1781-1804
  • Sun, Y., Xia, Y., Shape-Controlled Synthesis of Gold and Silver Nanoparticles (2002) Science, 298, pp. 2176-2179
  • Tao, A.R., Habas, S., Yang, P., Shape Control of Colloidal Metal Nanocrystals (2008) Small, 4, pp. 310-325
  • Ye, X., Jin, L., Caglayan, H., Chen, J., Xing, G., Zheng, C., Doan-Nguyen, V., Murray, C.B., Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives (2012) ACS Nano, 6, pp. 2804-2817
  • Ghosh Chaudhuri, R., Paria, S., Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications (2012) Chem. Rev., 112, pp. 2373-2433
  • Skrabalak, S.E., Chen, J., Sun, Y., Lu, X., Au, L., Cobley, C.M., Xia, Y., Gold Nanocages: Synthesis, Properties, and Applications (2008) Acc. Chem. Res., 41, pp. 1587-1595
  • Xia, Y., Xiong, Y., Lim, B., Skrabalak, S.E., Shape Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? (2009) Angew. Chem., Int. Ed., 48, pp. 60-103
  • Sperling, R.A., Parak, W.J., Surface Modification, Functionalization and Bioconjugation of Colloidal Inorganic Nanoparticles (2010) Philos. Trans. R. Soc., A, 368, pp. 1333-1383
  • Velev, O.D., Gupta, S., Materials Fabricated by Micro- and Nanoparticle Assembly - The Challenging Path from Science to Engineering (2009) Adv. Mater., 21, pp. 1897-1905
  • Vogel, N., Retsch, M., Fustin, C.A., Del Campo, A., Jonas, U., Advances in Colloidal Assembly: The Design of Structure and Hierarchy in Two and Three Dimensions (2015) Chem. Rev., 115, pp. 6265-6311
  • Malaquin, L., Kraus, T., Schmid, H., Delamarche, E., Wolf, H., Controlled Particle Placement through Convective and Capillary Assembly (2007) Langmuir, 23, pp. 11513-11521
  • Tao, A., Sinsermsuksakul, P., Yang, P., Tunable Plasmonic Lattices of Silver Nanocrystals (2007) Nat. Nanotechnol., 2, pp. 435-440
  • Flauraud, V., Mastrangeli, M., Bernasconi, G.D., Butet, J., Alexander, D.T.L., Shahrabi, E., Martin, O.J.F., Brugger, J., Nanoscale Topographical Control of Capillary Assembly of Nanoparticles (2016) Nat. Nanotechnol., 12, pp. 73-80
  • Chen, K.M., Jiang, X., Kimerling, L.C., Hammond, P.T., Selective Self-Organization of Colloids on Patterned Polyelectrolyte Templates (2000) Langmuir, 16, pp. 7825-7834
  • Fan, F., Stebe, K.J., Assembly of Colloidal Particles by Evaporation on Surfaces with Patterned Hydrophobicity (2004) Langmuir, 20, pp. 3062-3067
  • Urban, A.S., Lutich, A.A., Stefani, F.D., Feldmann, J., Laser Printing Single Gold Nanoparticles (2010) Nano Lett., 10, pp. 4794-4798
  • Guffey, M.J., Scherer, N.F., All-Optical Patterning of Au Nanoparticles on Surfaces Using Optical Traps (2010) Nano Lett., 10, pp. 4302-4308
  • Urban, A.S., Fedoruk, M., Nedev, S., Lutich, A., Lohmueller, T., Feldmann, J., Shrink-to-Fit Plasmonic Nanostructures (2013) Adv. Opt. Mater., 1, pp. 123-127
  • Bao, Y., Yan, Z., Scherer, N.F., Optical Printing of Electrodynamically Coupled Metallic Nanoparticle Arrays (2014) J. Phys. Chem. C, 118, pp. 19315-19321
  • Do, J., Fedoruk, M., Jäckel, F., Feldmann, J., Two-Color Laser Printing of Individual Gold Nanorods (2013) Nano Lett., 13, pp. 4164-4168
  • Do, J., Schreiber, R., Lutich, A.A., Liedl, T., Rodríguez-Fernández, J., Feldmann, J., Design and Optical Trapping of a Biocompatible Propeller-like Nanoscale Hybrid (2012) Nano Lett., 12, pp. 5008-5013
  • Guffey, M.J., Miller, R.L., Gray, S.K., Scherer, N.F., Plasmon-Driven Selective Deposition of Au Bipyramidal Nanoparticles (2011) Nano Lett., 11, pp. 4058-4066
  • Coronado, E.A., Encina, E.R., Stefani, F.D., Optical Properties of Metallic Nanoparticles: Manipulating Light, Heat and Forces at the Nanoscale (2011) Nanoscale, 3, pp. 4042-4059
  • Gargiulo, J., Cerrota, S., Cortés, E., Violi, I.L., Stefani, F.D., Connecting Metallic Nanoparticles by Optical Printing (2016) Nano Lett., 16, pp. 1224-1229
  • Nedev, S., Urban, A.S., Lutich, A.A., Feldmann, J., Optical Force Stamping Lithography (2011) Nano Lett., 11, pp. 5066-5070
  • Do, J., Sediq, K.N., Deasy, K., Coles, D.M., Rodríguez-Fernández, J., Feldmann, J., Lidzey, D.G., Photonic Crystal Nanocavities Containing Plasmonic Nanoparticles Assembled Using a Laser-Printing Technique (2013) Adv. Opt. Mater., 1, pp. 946-951
  • Li, M., Lohmüller, T., Feldmann, J., Optical Injection of Gold Nanoparticles into Living Cells (2015) Nano Lett., 15, pp. 770-775
  • Huergo, M.A., Maier, C.M., Castez, M.F., Vericat, C., Nedev, S., Salvarezza, R.C., Urban, A.S., Feldmann, J., Optical Nanoparticle Sorting Elucidates Synthesis of Plasmonic Nanotriangles (2016) ACS Nano, 10, pp. 3614-3621
  • Violi, I.L., Gargiulo, J., Von Bilderling, C., Cortés, E., Stefani, F.D., Light-Induced Polarization-Directed Growth of Optically Printed Gold Nanoparticles (2016) Nano Lett., 16, pp. 6529-6533
  • Setoura, K., Okada, Y., Hashimoto, S., CW-Laser-Induced Morphological Changes of a Single Gold Nanoparticle on Glass: Observation of Surface Evaporation (2014) Phys. Chem. Chem. Phys., 16, pp. 26938-26945
  • Langille, M.R., Personick, M.L., Mirkin, C.A., Plasmon-Mediated Syntheses of Metallic Nanostructures (2013) Angew. Chem., Int. Ed., 52, pp. 13910-13940
  • Jacobsen, V., Stoller, P., Brunner, C., Vogel, V., Sandoghdar, V., Interferometric Optical Detection and Tracking of Very Small Gold Nanoparticles at a Water-Glass Interface (2006) Opt. Express, 14, pp. 405-414
  • Batchelor, G.K., (2000) An Introduction to Fluid Dynamics, , Cambridge University Press: Cambridge
  • Rings, D., Schachoff, R., Selmke, M., Cichos, F., Kroy, K., Hot Brownian Motion (2010) Phys. Rev. Lett., 105, p. 90604
  • Lehmuskero, A., Johansson, P., Rubinsztein-Dunlop, H., Tong, L., Käll, M., Laser Trapping of Colloidal Metal Nanoparticles (2015) ACS Nano, 9, pp. 3453-3469
  • Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites (1997) Science, 277, pp. 1232-1237
  • Agayan, R.R., Gittes, F., Kopelman, R., Schmidt, C.F., Optical Trapping near Resonance Absorption (2002) Appl. Opt., 41, pp. 2318-2327
  • Kuwata, H., Tamaru, H., Esumi, K., Miyano, K., Resonant Light Scattering from Metal Nanoparticles: Practical Analysis beyond Rayleigh Approximation (2003) Appl. Phys. Lett., 83, pp. 4625-4627
  • Gouesbet, G., Gréhan, G., (2011) Generalized Lorenz-Mie Theories, , Springer: Berlin, Heidelberg
  • Novotny, L., Hecht, B., (2006) Principles of Nano-Optics, , Cambridge University Press: Cambridge
  • Neves, A.A.A.R., Fontes, A., Padilha, L.A., Rodriguez, E., De Brito Cruz, C.H., Barbosa, L.C., Cesar, C.L., Exact Partial Wave Expansion of Optical Beams with Respect to an Arbitrary Origin (2006) Opt. Lett., 31, pp. 2477-2479
  • Figliozzi, P., Sule, N., Yan, Z., Bao, Y., Burov, S., Gray, S.K., Rice, S.A., Scherer, N.F., Driven Optical Matter: Dynamics of Electrodynamically Coupled Nanoparticles in an Optical Ring Vortex (2017) Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 95, p. 22604
  • Israelachvili, J.N., (2011) Intermolecular and Surface Forces, , Academic Press: Waltham, MA
  • Lipkin, D.M., Israelachvili, J.N., Clarke, D.R., Estimating the Metal-Ceramic van der Waals Adhesion Energy (1997) Philos. Mag. A, 76, pp. 715-728
  • Irigoyen, J., Moya, S.E., Iturri, J.J., Llarena, I., Azzaroni, O., Donath, E., Specific ζ-Potential Response of Layer-by-Layer Coated Colloidal Particles Triggered by Polyelectrolyte Ion Interactions (2009) Langmuir, 25, pp. 3374-3380

Citas:

---------- APA ----------
Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., Diaz, F.,..., Stefani, F.D. (2017) . Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS Nano, 11(10), 9678-9688.
http://dx.doi.org/10.1021/acsnano.7b04136
---------- CHICAGO ----------
Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., et al. "Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles" . ACS Nano 11, no. 10 (2017) : 9678-9688.
http://dx.doi.org/10.1021/acsnano.7b04136
---------- MLA ----------
Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., et al. "Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles" . ACS Nano, vol. 11, no. 10, 2017, pp. 9678-9688.
http://dx.doi.org/10.1021/acsnano.7b04136
---------- VANCOUVER ----------
Gargiulo, J., Violi, I.L., Cerrota, S., Chvátal, L., Cortés, E., Perassi, E.M., et al. Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles. ACS Nano. 2017;11(10):9678-9688.
http://dx.doi.org/10.1021/acsnano.7b04136