Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this work was to fully understand the physicochemical events involved in the development of the cornflake structure, taking into consideration the water sorption characteristics and state changes in the solid phase as a function of temperature and water content. Complementarily, time-resolved proton nuclear magnetic resonance (1H-TD-NMR) was used to evaluate the dynamic aspects at different stages of the classical cornflake production process. Processing had the effect of reducing the water sorption capacity of the samples and of increasing the sorption energy. While the minimal water content necessary to detect starch gelatinization was lower than the water content at which frozen water was detected by DSC (W = 24%), water excess for an adequate cooking needs to be higher than this value. By describing the process using supplemented state diagrams, it was possible to delimitate regions in which the main components (starch and proteins) underwent specific changes such as gelatinization or crosslinking. The data of comparative mobility of water populations helped to understand the occurrence of those changes. The physical state of the samples could be established for each process stage, the matrix was soft and malleable when important internal and external forces were applied which allowed the change of shape, microstructure, and appearance of the product. Physical hardening occurred after toasting to create the typical expected crispy texture. The data of comparative mobility of proton populations helped to understand the occurrence of those changes, the conditions prevailing in each stage, and the physical state of the sample. © 2014, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Cornflake Production Process: State Diagram and Water Mobility Characteristics
Autor:Farroni, A.E.; del Pilar Buera, M.
Filiación:Laboratorio de Calidad de Alimentos, Suelos y Aguas, INTA Pergamino, Av. Frondizi (Ruta 32) Km 4.5, CC 31-B2700WAA, Pergamino, Buenos Aires, Argentina
Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 100, Ciudad de Buenos Aires, C1428EGA, Argentina
Palabras clave:Cornflakes; DSC; Molecular mobility; NMR; State diagrams; Water sorption isotherm; Cereal products; Gelation; Population statistics; Protons; Sorption; Starch; Cornflakes; DSC; Molecular mobility; State diagram; Water sorption isotherms; Nuclear magnetic resonance
Año:2014
Volumen:7
Número:10
Página de inicio:2902
Página de fin:2911
DOI: http://dx.doi.org/10.1007/s11947-014-1270-5
Título revista:Food and Bioprocess Technology
Título revista abreviado:Food. Bioprocess Technol.
ISSN:19355130
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v7_n10_p2902_Farroni

Referencias:

  • Approved methods of the American Association of Cereal Chemists. Method 44–16. AACC International (1996) St, , Paul, MN: USA
  • Assifaoui, A., Champion, D., Chiotelli, E., Verel, A., Characterization of water mobility in biscuit dough using a low-field 1H NMR technique (2006) Carbohydrate Polymers, 64, pp. 197-204. , COI: 1:CAS:528:DC%2BD28XjvFynur8%3D
  • Buera, M.P., Roos, H., Levine, H., Slade, L., Corti, H.R., Reid, D.S., Auffret, T., Angell, C.A., State diagrams for improving processing and storage of foods, biological materials, and pharmaceuticals (IUPAC technical report) (2011) Pure and Applied Chemistry, 83 (8), pp. 1567-1617. , COI: 1:CAS:528:DC%2BC3MXhs1Orsb7L
  • Buera, P., (2010) Barbosa-Canovas G & Gutiérrez G (2011b) ISOPOW 11 Round table discussion and closing of ISOPOW practicum III, 9-10. , http://www.worldfoodscience.org/cms/?pid=1005756, September: World of Food Science
  • Carr, H.Y., Purcell, E.M., Effects of diffusion on free precession in nuclear magnetic resonance experiments (1954) Physical Review, 94 (3), pp. 630-638. , COI: 1:CAS:528:DyaG2cXksFKjtA%3D%3D
  • Chen, C.-M., Yeh, A.-I., Effect of amylose content on expansion of extruded rice pellet (2001) Cereal Chemistry Journal, 78 (3), pp. 261-266. , COI: 1:CAS:528:DC%2BD3MXktlWitrY%3D
  • Chen, P., Long, Z., Ruan, R., Labuza, T., Nuclear magnetic resonance studies of water mobility in bread during storage (1997) Food Science and Technology, 30, pp. 178-183. , COI: 1:CAS:528:DyaK2sXhsl2rs7o%3D
  • Chinachoti, P., Vittadini, E., Chatakanonda, P., Vodovotz, Y., Characterization of molecular mobility in carbohydrate food systems by NMR (2008) Modern Magnetic Resonance, pp. 1703-1712. , Webb GA, (ed), Springer, Dordrecht, Netherlands:
  • Choi, S., Kerr, W., 1H NMR studies of molecular mobility in wheat starch (2003) Food Research International, 36, pp. 341-348. , COI: 1:CAS:528:DC%2BD3sXhs1KnurY%3D
  • Chung, H.-J., Lim, S.-T., Physical aging of glassy normal and waxy rice starches: thermal and mechanical characterization (2004) Carbohydrate Polymers, 57, pp. 15-21. , COI: 1:CAS:528:DC%2BD2cXmtVSkur0%3D
  • Colquhoun, I., Goodfellow, B., Nuclear magnetic resonance spectroscopy (1994) Spectroscopic techniques for food analysis, pp. 87-145. , Reiginald W, (ed), VCH Publishers Inc., New York, USA:
  • Cova, A., Sandoval, A.J., Balsamo, V., Müller, A.J., The effect of hydrophobic modifications on the adsorption isotherms of cassava starch (2010) Carbohydrate Polymers, 81, pp. 660-667. , COI: 1:CAS:528:DC%2BC3cXmt1elurk%3D
  • Culbertson, J.D., Grain, cereal: ready to eat breakfast cereals (2004) Food processing: principles and applications, , Smith SJ, Hui YH, (eds), Blackwell, Oxford, UK:
  • Cuq, B., Abecassis, J., Guilbert, S., State diagrams to help describe wheat bread processing (2003) International Journal of Food Science & Technology, 38 (7), pp. 759-766. , COI: 1:CAS:528:DC%2BD3sXnvFOntb0%3D
  • Curti, E., Bubici, S., Carini, E., Baroni, S., Vittadini, E., Water molecular dynamics during bread staling by nuclear magnetic resonance (2011) Food Science and Technology, 44, pp. 854-859. , COI: 1:CAS:528:DC%2BC3MXhtVWgtrg%3D
  • Farhat, I.A., Mitchell, J.R., Blanshard, J.M.V., Derbyshire, W., A pulsed 1H NMR study of the hydration properties of extruded maize-sucrose mixtures (1996) Carbohydrate Polymers, 30, pp. 219-227. , COI: 1:CAS:528:DyaK2sXnsVShuw%3D%3D
  • Farroni, A.E., Buera, M.P., Colour and surface fluorescence development and their relationship with Maillard reaction markers as influenced by structural changes during cornflakes production (2012) Food Chemistry, 135, pp. 1685-1691. , COI: 1:CAS:528:DC%2BC38XhtlSlsr%2FJ
  • Farroni, A.E., Matiacevich, S.B., Guerrero, S., Alzamora, S., Buera, M.P., Multi-level approach for the analysis of water effects in corn flakes (2008) Journal of Agricultural and Food Chemistry, 56 (15), pp. 6447-6453. , COI: 1:CAS:528:DC%2BD1cXotlGlsb0%3D
  • Fast, R.B., Manufacturing technology of ready-to-eat cereals (2000) Breakfast cereals and how they are made, pp. 17-54. , Fast RB, Caldwell EF, (eds), American Association of Cereal Chemist, St. Paul, Minnesota, U.S.A.:
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical magnetic resonance imaging principles, methodology, and application, pp. 115-155. , Wehrli FW, Kneeland JB, (eds), VCH Publishers Inc., New York, USA:
  • Fundo, J.F., Fernandes, R., Almeida, P.M., Carvalho, A., Feio, G., Silva, C.L., Quintas, M.A., Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films (2014) Food Chemistry, 144 (1), pp. 2-8. , COI: 1:CAS:528:DC%2BC3sXpvFCjsbY%3D
  • Gabbott, P., A practical introduction to differential scanning calorimetry (2008) Principles and applications of thermal analysis, pp. 1-50. , Gabbott P, (ed), Blackwell Publishing Ltd., Oxford, UK:
  • Gordon, M., Taylor, J.S., Ideal copolymers and the 2nd order transitions of synthetic rubbers. 1. Non-crystalline copolymers (1952) Journal of Applied Chemistry, 2 (2), pp. 493-500. , COI: 1:CAS:528:DyaG3sXjvF2ntA%3D%3D
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions. Journal of research of the National Bureau of Standards. Section A (1977) Physics and Chemistry, 81, pp. 89-95
  • Gregg, S.J., Sing, K.S.W., (1982) Adsorption, surface area, and porosity, , Academic Press London, UK:
  • Hahn, E.L., Spin Echoes (1950) Physical Review, 80 (4), pp. 580-594
  • Katkov, I.I., Levine, F., Prediction of the glass transition temperature of water solutions: comparison of different models (2004) Cryobiology, 49 (1), p. 62. , COI: 1:CAS:528:DC%2BD2cXlvVWiu7w%3D
  • Levine, H., Slade, L., Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products (1989) Dough rheology and baked product texture, pp. 157-330. , Faridi H, Faubion JM, (eds), Springer, New York, USA:
  • Levine, H., Slade, L., Glass transitions in food (1992) Physical chemistry of foods, pp. 83-221. , Schwartzberg H, Hartel H, (eds), Marcel Dekker, New York, USA:
  • Levine, H., Slade, L., (1991) Water relationships in foods. Advances in the 1980s and trends for de 1990s, , Springer, New York, USA:
  • Lin, X., Ruan, R.R., Chen, P.L., Chung, M., Ye, X., Yang, T., Doona, C., Wagner, T., NMR state diagram concept (2006) Journal of Food Science, 71 (9), pp. R136-R145. , COI: 1:CAS:528:DC%2BD28XhtlSju7vE
  • Liu, H., Yu, L., Chen, L., Li, L., Retrogradation of corn starch after thermal treatment at different temperatures (2007) Carbohydrate Polymers, 69, pp. 756-762. , COI: 1:CAS:528:DC%2BD2sXlvVaks78%3D
  • Lomauro, C.J., Bakshi, A.S., Labuza, T.P., Evaluation of food moisture sorption isotherm equations part 1: Fruit, vegetable and meat products (1985) Food Science and Technology, 18 (2), pp. 111-117
  • Madeka, H., Kokini, J.L., Effect of glass transition and cross-linking on rheological properties of zein: development of a preliminary state diagram (1996) Cereal Chemistry, 73 (4), pp. 433-438. , COI: 1:CAS:528:DyaK28Xks1enu7Y%3D
  • Palou, E., Lopez-Malo, A., Argaiz, A., Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks (1997) Journal of Food Engineering, 31 (1), pp. 85-93
  • Rahman, M.S., State diagram of foods: its potential use in food processing and product stability (2006) Trends in Food Science & Technology, 17, pp. 129-141. , COI: 1:CAS:528:DC%2BD28XhsFyhsbw%3D
  • Roos, Y.H., Thermal analysis, state transitions and food quality (2003) Journal of Thermal Analysis and Calorimetry, 71, pp. 193-199
  • Roos, Y.H., Karel, M., Kokini, J.L., Glass transitions in low moisture and frozen foods: effects on shelf life and quality (1996) Food Technology, 50 (11), pp. 95-108
  • Ruan, R.R., Chen, P.L., Nuclear magnetic resonance techniques (1998) Water in foods and biological materials: a nuclear magnetic resonance approach, pp. 17-24. , Technomic Publishing Co, Lancaster, Pennsylvania, USA:
  • Sablani, S.S., Bruno, L., Kasapis, S., Symaladevi, R.M., Thermal transitions of rice: development of a state diagram (2009) Journal of Food Engineering, 90, pp. 110-118
  • Samapundo, S., Devlieghere, F., Meulenaer, B.D., Atukwase, A., Lamboni, Y., Debevere, J.M., Sorption isotherms and isosteric heats of sorption of whole yellow dent corn (2007) Journal of Food Engineering, 79 (1), pp. 168-175
  • Sandoval, A.J., Nuñez, M., Müller, J.A., Della Valle, G., Lourdin, D., Glass transition temperatures of a ready to eat breakfast cereal formulation and its main components determined by DSC and DMTA (2009) Carbohydrate Polymers, 76, pp. 528-534. , COI: 1:CAS:528:DC%2BD1MXktF2ls7o%3D
  • Schmidt, S.J., Water mobility in foods (2004) Advances in Food and Nutrition Research, 48, pp. 1-101. , COI: 1:CAS:528:DC%2BD2MXos1SisA%3D%3D
  • Slade, L., Levine, H., Glass transitions and water food structure interactions (1995) Advances in Food Nutrition Research, 38, pp. 103-269. , COI: 1:CAS:528:DyaK28Xjt1KntA%3D%3D
  • Slade, L., Levine, H., Finley, J.W., Protein-water interactions: water as a plasticizer of gluten and other protein polymers (1989) Protein quality and the effects of processing, pp. 9-124. , Phillips RD, Finley JW, (eds), Marcel Dekker, New York, USA:
  • Tang, R.H., Hills, B.B., A proton NMR relaxation study of the gelatinization and acid hydrolysis of native potato starch (2001) Carbohydrate Polymers, 46, pp. 7-18. , COI: 1:CAS:528:DC%2BD3MXkslWksbg%3D
  • Thiewes, H., Steeneken, P., The glass transition and the sub-Tg endotherm of amorphous and native potato starch at low moisture content (1997) Carbohydrate Polymers, 32, pp. 123-130. , COI: 1:CAS:528:DyaK2sXjtlymsb8%3D
  • Timmermann, E.O., Chirife, J., The physical state of water sorbed at high activities in starch in terms of the GAB sorption equation (1991) Journal of Food Engineering, 13 (17), pp. 1-179
  • Timmermann, E.O., Chirife, J., Iglesias, H.A., Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? (2001) Journal of Food Engineering, 48 (1), pp. 19-31
  • Toufeili, I., Lambert, I.A., Kokini, J.L., Effect of glass transition and cross-linking on rheological properties of gluten: development of a preliminary state diagram (2002) Cereal Chemistry, 79 (1), pp. 138-142. , COI: 1:CAS:528:DC%2BD38XksFWjtA%3D%3D
  • Wang, X., Choi, S.G., Kerr, W.L., Water dynamics in white bread and starch gels as affected by water and gluten content (2004) Food Science and Technology, 37, pp. 377-384
  • Yanniotis, S., Blahovec, J., Model analysis of sorption isotherms (2009) Food Science and Technology, 42, pp. 1688-1695. , COI: 1:CAS:528:DC%2BD1MXhtVKktrvO

Citas:

---------- APA ----------
Farroni, A.E. & del Pilar Buera, M. (2014) . Cornflake Production Process: State Diagram and Water Mobility Characteristics. Food and Bioprocess Technology, 7(10), 2902-2911.
http://dx.doi.org/10.1007/s11947-014-1270-5
---------- CHICAGO ----------
Farroni, A.E., del Pilar Buera, M. "Cornflake Production Process: State Diagram and Water Mobility Characteristics" . Food and Bioprocess Technology 7, no. 10 (2014) : 2902-2911.
http://dx.doi.org/10.1007/s11947-014-1270-5
---------- MLA ----------
Farroni, A.E., del Pilar Buera, M. "Cornflake Production Process: State Diagram and Water Mobility Characteristics" . Food and Bioprocess Technology, vol. 7, no. 10, 2014, pp. 2902-2911.
http://dx.doi.org/10.1007/s11947-014-1270-5
---------- VANCOUVER ----------
Farroni, A.E., del Pilar Buera, M. Cornflake Production Process: State Diagram and Water Mobility Characteristics. Food. Bioprocess Technol. 2014;7(10):2902-2911.
http://dx.doi.org/10.1007/s11947-014-1270-5