Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of sucrose infusion (SI) pretreatment and dehydration methods (freeze and air drying) on physical and textural properties of apple disks were analyzed. Dried samples were humidified between 11% and 43% relative humidity (RH) at 20 °C. Control samples (air- and freeze-dried) behaved similarly regarding water sorption and glass transition temperature. SI process caused important changes in the water sorption behavior of air-dried samples. Nuclear magnetic resonance relaxation times values (T 2) for freeze-dried apples were higher than those for air-dried samples. Samples subjected to previous SI always presented lower T 2 values because they had lower water contents. The dehydration method also affected the mechanic behavior. Air-dried samples exhibited higher F max values during puncture assay than those obtained for freeze-dried samples. SI samples showed higher F max values for both drying methods. The crust formed during air drying generated crispier materials along the whole RH range, while freeze-dried matrices were more deformable with the increase in RH. SI pretreatment also allowed diminishing browning development. The results obtained are useful in the choice of processing technologies of organoleptically acceptable dehydrated fruits for direct consumption or for their incorporation into compound foods. © 2010 Springer Science + Business Media, LLC.

Registro:

Documento: Artículo
Título:Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods
Autor:Sosa, N.; Salvatori, D.M.; Schebor, C.
Filiación:Departamentos de Industrias y Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Laboratorio de Tecnología de Alimentos, Departamento de Química, Facultad de Ingeniería, Instituto de Investigacion y Desarrollo de la Patagonia Norte (IDEPA), CONICET-Universidad Nacional del Comahue, Buenos Aires 1400 (8300) Neuquén, Argentina
CONICET, Buenos Aires, Argentina
Palabras clave:Apple; Dehydration; Physical properties; Sucrose infusion; Texture; Air drying; Apple; Control samples; Drying methods; Magnetic resonance relaxation; Mechanic behavior; Osmotic dehydration; Physico-chemicals; Pre-Treatment; Processing technologies; Si process; Textural properties; Water sorption; Dehydration; Fruits; Mechanical properties; Physical properties; Sorption; Sugar (sucrose); Textures; Drying; Malus x domestica
Año:2012
Volumen:5
Número:5
Página de inicio:1790
Página de fin:1802
DOI: http://dx.doi.org/10.1007/s11947-010-0468-4
Título revista:Food and Bioprocess Technology
Título revista abreviado:Food. Bioprocess Technol.
ISSN:19355130
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19355130_v5_n5_p1790_Sosa

Referencias:

  • Ablett, S., Darke, A.H., Izzard, M.J., Lillford, P.J., Studies of the glass transition in malto-oligomers (1993) The Glassy State in Foods, pp. 189-206. , J. M. V. Blanshard and P. J. Lillford (Eds.), Loughborough: Nothingham University Press
  • Acevedo, N., Schebor, C., Buera, M.P., Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning (2006) Journal of Food Engineering, 77 (4), pp. 1108-1115
  • Acevedo, N.C., Briones, V., Buera, P., Aguilera, J.M., Microstructure affects the rate of chemical, physical and color changes during storage of dried apple discs (2008) Journal of Food Engineering, 85 (2), pp. 222-231
  • Aguilera, J.M., Cuadros, T.R., del Valle, J.M., Differential scanning calorimetry of low-moisture apple products (1998) Carbohydrate Polymers, 37 (1), pp. 79-86
  • Alzamora, S.M., Tapia, M.S., Welti-Chanes, J., Application of combined methods technology in minimally process fruits (1993) Food Research International, 26, pp. 125-130
  • Askari, G.R., Emam-Djomeh, Z., Mousavi, S.M., Effects of combined coating and microwave assisted hot-air drying on the texture, microstructure and rehydration characteristics of apple slices (2006) Food Science and Technology International, 12 (1), pp. 39-46
  • Azuara, E., Flores, E., Beristain, C.I., Water diffusion and concentration profiles during osmodehydration and storage of apple tissue (2009) Food and Bioprocess Technology, 2, pp. 361-367
  • Barrett, A.H., Rosenberg, S., Ross, E.W., Fracture intensity distributions during compression of puffed corn meal extrudates: Method for quantifying fracturability (1994) Journal of Food Science, 59 (3), pp. 617-620
  • Bruzzone, I., (2006) Pera. Análisis De La Cadena Alimentaria-Sector Frutas. Dirección Nacional De Alimentos, , http://www.alimentosargentinos.gov.ar/03/revistas/r_32/cadenas/Frutas_Pera.htm, Secretaría de Agricultura, Pesca y Alimentos, Argentina. Retrieved from
  • Buera, M.P., Karel, M., Effect of physical changes on the rates of nonenzymatic browning and related reactions (1995) Food Chemistry, 52, pp. 167-173
  • Chen, P.L., Long, Z., Ruan, R., Labuza, T.P., Nuclear magnetic resonance studies of water mobility in bread during storage (1997) Lebensmittel-Wissenschaft & Technologie, 30, pp. 178-183
  • Contreras, C., Martín, M.E., Martínez-Navarrete, N., Chiralt, A., Effect of vacuum impregnation and microwave application on structural changes which occurred during air-drying of apple (2005) LWT-Food Science and Technology, 38 (5), pp. 471-477
  • del Valle, J.M., Cuadros, T.R.M., Aguilera, J.M., Glass transitions and shrinkage during drying and storage of osmosed apple pieces (1998) Food Research International, 31 (3), pp. 191-204
  • Deng, Y., Zhao, Y., Effect of pulsed vacuum and ultrasound osmopretreatments on glass transition temperature, texture, microstructure and calcium penetration of dried apples (Fuji) (2008) LWT-Food Science and Technology, 41 (9), pp. 1575-1585
  • Dobraszczyk, B.J., Vincent, J.V., Measurement of mechanical properties of food materials in relation to texture: The materials approach (1999) Food Texture, pp. 99-151. , A. J. Rosenthal (Ed.), Gaithersburg: Aspen
  • Fullerton, G.D., Cameron, I.L., Relaxation of biological tissues (1988) Biomedical Magnetic Resonance Imaging, pp. 115-155. , F. W. Wehrli (Ed.), New York: VCH
  • Funebo, T., Ahrné, L., Kidman, S., Langton, M., Skjöldebrand, C., Microwave heat treatment of apple before air dehydration-Effects on physical properties and microsctructure (2000) Journal of Food Engineering, 46, pp. 173-182
  • Gil, A.M., Belton, P.S., Hills, B.P., Applications of NMR to food science (1996) Annual Reports on NMR Spectroscopy, 32, pp. 1-49
  • Grabowski, S., Marcotte, M., Ramaswany, H., Dehydrated vegetables: Principles and applications (2006) Handbook of Food Technology and Food Engineering (Ch. 118, Vol. III: Food Engineering and Food Processing), pp. 1-17. , Y. H. Hui (Ed.), Boca Raton: CRC
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) Journal of Research, 8 (1), pp. 89-96
  • Harker, F.R., Maindonald, J.H., Jackson, P.J., Penetrometer measurement of apple and kiwifruit firmness: Operator and instrument differences (1996) Journal of American Society of Horticultural Science, 121 (5), pp. 927-936
  • Harris, M., Peleg, M., Patterns of textural changes in brittle cellular foods caused by moisture sorption (1996) Journal of Texture Studies, 73 (2), pp. 225-231
  • Jaya, S., Durance, T.D., Compressive characteristics of cellular solids produced using vacuum-microwave, freeze, vacuum and hot-air dehydration (2009) Journal of Porous Materials, 16, pp. 47-58
  • Kalichevsky, M.T., Jaroszkiewicz, E.M., Ablett, S., Blanshard, J.M.V., Lillford, P.J., The glass transition of amylopectin measured by DSC, DMTA and NMR (1992) Carbohydrate Polymers, 18 (2), pp. 77-88
  • Karel, M., Anglea, S., Buera, P., Karmas, R., Levi, G., Roos, Y., Stability-related transitions of amorphous foods (1994) Thermochimica Acta, 246, pp. 249-269
  • Katz, E.E., Labuza, T.P., Effect of water activity on the sensory crispness and mechanical deformation of snack food products (1981) Journal of Food Science, 46, pp. 403-409
  • Khalloufi, S., Ratti, C., Quality deterioration of freeze-dried foods as explained by their glass transition temperature and internal structure (2003) Journal of Food Science, 68 (3), pp. 892-902
  • Kou, Y., Dickinson, L.C., Chinachoti, P., Mobility characterization of waxy corn starch using wide-line 1H nuclear magnetic resonance (2000) Journal of Agricultural and Food Chemistry, 48 (11), pp. 5489-5495
  • Krokida, M.K., Maroulis, Z.B., Saravacos, G.D., The effect of the method of drying on the colour of dehydrated products (2001) International Journal of Food Science and Technology, 36, pp. 53-59
  • le Loch-Bonazzi, C., Wolff, E., Gilbert, H., Quality of dehydrated cultivated mushrooms (Agaricus bisporus): a comparison between different drying and freeze drying processes (1992) Lebensmittel-Wissenschaft & Technologie, 25, pp. 334-339
  • Leistner, L., Hurdle technology in the design of minimally processed foods (2000) Minimally Processed Fruits and Vegetables, pp. 13-27. , S. M. Alzamora, S. Tapia, A. López-Malo (Eds.), Gaithersburg: Aspen
  • Lenart, A., Osmo-convective drying of fruits and vegetables: Technology and application (1996) Drying Technology, 14, pp. 391-413
  • Lewicki, P., Jakubczyk, E., Marzec, A., Cabral, M., Pereira, P., Effect of water activity on mechanical properties of dry cereal products (2004) Acta Agrophysica, 4 (2), pp. 381-391
  • Lin, T.M., Durance, T.D., Scaman, C.H., Characterization of vacuum microwave, air and freeze dried carrot slices (1998) Food Research International, 31, pp. 111-317
  • Lombard, G.E., Oliveira, J.C., Fito, P., Andrés, A., Osmotic dehydration of pineapple as a pre-treatment for further drying (2008) Journal of Food Engineering, 85, pp. 277-284
  • Lu, Y., Foo, Y., Antioxidant and radical scavenging activities of polyphenols from apple pomace (2000) Food Chemistry, 68, pp. 81-85
  • Mandala, I.G., Anagnostaras, E.F., Oikonomou, C.K., Influence of osmotic dehydration conditions on apple air-drying kinetics and their quality characteristics (2005) Journal of Food Engineering, 69 (3), pp. 307-316
  • Moavro, E., Peras y manzanas (2010) Alimentos Argentinos, 48, pp. 45-48
  • Mujumdar, A.S., Law, C.L., Drying technology: Trends and applications in postharvest processing (2010) Food and Bioprocess Technology, 3, pp. 843-852. , doi:10.1007/s11947-010-0353-1
  • Nieto, A., Salvatori, D., Castro, M.A., Alzamora, S.M., Structural changes in apple tissue during glucose and sucrose osmotic dehydration: shrinkage, porosity, density and microscopic features (2004) Journal of Food Engineering, 61 (2), pp. 269-278
  • Ochoa-Martínez, L.A., García-Quintero, M., Morales-Castro, J., Gallegos-Infante, A., Martínez-Sánchez, C.E., Herman-Lara, E., Effect of CaCl 2 and convective-osmotic drying on texture and preference of apple (2006) Journal of Food Quality, 29, pp. 583-595
  • Onwulata, C.I., Smith, P.W., Konstance, R.P., Holsinger, V.H., Incorporation of whey products in extruded corn, potato or rice snacks (2001) Food Research International, 34 (8), pp. 679-687
  • Peleg, M., Phase transitions and the mechanical properties of food biopolymers (1999) Biopolymer Science: Food and Non Food Applications, pp. 271-282. , P. Colonna and S. Guilbert (Eds.), Paris: INRA Editions
  • Peleg, M., On fundamental issues in texture evaluation and texturization-A view (2006) Food Hydrocolloids, 20 (4), pp. 405-414
  • Potter, N., Hotchkiss, J., Food dehydration (1995) Food Science, pp. 200-243. , N. Potter and J. Hotchkiss (Eds.), New York: Springer
  • Rahman, M.S., Toward prediction of porosity in foods during drying: A brief review (2001) Drying Technology, 19, pp. 1-13
  • Rahman, M.S., Perera, C.O., Drying and food preservation (2007) Handbook of Food Preservation, pp. 403-432. , M. S. Rahman (Ed.), New York: Marcel Dekker
  • Ratti, C., Shrinkage during drying of food foodstuffs (1994) Journal of Food Engineering, 23, pp. 91-105
  • Rault-Wack, A.L., Recent advances in the osmotic dehydration of foods (1994) Trends in Food Science & Technology, 5, pp. 255-260
  • Reppa, A., Mandala, J., Kostaropoulos, A.K., Saravacos, G.D., Influence of solute temperature and concentration on the combined osmotic and air drying (1999) Drying Technology, 17 (7-8), pp. 1449-1458
  • Roudaut, G., Dacremont, C., Vallès, P.B., Colas, B., le Meste, M., Crispness: A critical review on sensory and material science approaches (2002) Trends in Food Science & Technology, 13 (6-7), pp. 217-227
  • Ruan, R., Wang, X., Chen, P.L., Fulcher, R.G., Pescheck, P., Chakrabarti, S., Study of water in dough using nuclear magnetic resonance (1999) Cereal Chemistry, 76 (2), pp. 231-235
  • Rugraff, Y.L., Desbois, P., le Botlan, D.J., Quantitative analysis of wheat starch-water suspensions by pulsed NMR spectroscopy measurements (1996) Carbohydrate Research, 295, pp. 185-194
  • Sá, M.M., Figueiredo, A.M., Sereno, A.M., Glass transitions and state diagrams for fresh and processed apple (1999) Thermochimica Acta, 329 (1), pp. 31-38
  • Sagar, V.R., Kumar, P.S., Recent advances in drying and dehydration of fruits and vegetables: A review (2010) Journal of Food Science and Technology, 47 (1), pp. 15-26
  • Salvatori, D.M., Alzamora, S.M., Structural changes and mass transfer during glucose infusion of apples as affected by blanching and process variables (2000) Drying Technology, 18, pp. 361-382
  • Salvatori, D., Andrés, A., Albors, A., Chiralt, A., Fito, P., Analysis of the structural and compositional profiles in osmotically dehydrated apple tissue (1998) Journal of Food Science, 63 (3), pp. 179-186
  • Shyu, S.L., Hwang, L.S., Effect of processing conditions on the quality of vacuum fried apple chips (2001) Food Research International, 34, pp. 133-142
  • Slade, L., Levine, H., Beyond water activity: Recent advances based on an alternative approach to the assessment of food quality and safety (1991) Critical Reviews in Food Science and Nutrition, 30 (2-3), pp. 115-360
  • Slade, L., Levine, H., Glass transition and water-food structure interactions (1995) Advances in Food and Nutrition Research, 38, pp. 103-269
  • Szczesniak, A.S., Instrumental methods of textural measurements (1973) Texture Measurements of Foods, pp. 71-104. , A. Kramer and A. S. Szczesniak (Eds.), New York: Kluwer
  • Taiwo, K.A., Angersbach, A., Ade-Omowaye, B.I., Knorr, D., Effects of pretreatments on the diffusion kinetics and some quality parameters of osmotically dehydrated apple slices (2001) Journal of Agricultural and Food Chemistry, 49, pp. 2804-2811
  • Torreggiani, D., Bertolo, G., Osmotic pre-treatments in fruit processing: Chemical, physical and structural effects (2001) Journal of Food Engineering, 49 (2-3), pp. 247-253
  • van Hecke, E., Allaf, K., Bouvier, J.M., Texture and structure of crispy-puffed food products. Part II: Mechanical properties in puncture (1998) Journal of Texture Studies, 29, pp. 617-632
  • Venir, E., Munari, M., Tonizzo, A., Maltini, E., Structure related changes during moistening of freeze dried apple tissue (2007) Journal of Food Engineering, 81 (1), pp. 27-32
  • Watada, A.E., Methods for determining quality of fruits and vegetables (1995) Acta Horticulturae, 379 (1), pp. 559-567
  • Zar, J.H., (1999) Biostatistical Analysis, , 4th edn., Upper Saddle: Prentice Hall

Citas:

---------- APA ----------
Sosa, N., Salvatori, D.M. & Schebor, C. (2012) . Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food and Bioprocess Technology, 5(5), 1790-1802.
http://dx.doi.org/10.1007/s11947-010-0468-4
---------- CHICAGO ----------
Sosa, N., Salvatori, D.M., Schebor, C. "Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods" . Food and Bioprocess Technology 5, no. 5 (2012) : 1790-1802.
http://dx.doi.org/10.1007/s11947-010-0468-4
---------- MLA ----------
Sosa, N., Salvatori, D.M., Schebor, C. "Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods" . Food and Bioprocess Technology, vol. 5, no. 5, 2012, pp. 1790-1802.
http://dx.doi.org/10.1007/s11947-010-0468-4
---------- VANCOUVER ----------
Sosa, N., Salvatori, D.M., Schebor, C. Physico-Chemical and Mechanical Properties of Apple Disks Subjected to Osmotic Dehydration and Different Drying Methods. Food. Bioprocess Technol. 2012;5(5):1790-1802.
http://dx.doi.org/10.1007/s11947-010-0468-4