Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The olfactory epithelium (OE) has the remarkable capability to constantly replace olfactory receptor neurons (ORNs) due to the presence of neural stem cells (NSCs). For this reason, the OE provides an excellent model to study neurogenesis and neuronal differentiation. In the present work, we induced neuronal degeneration in the OE of Xenopus laevis larvae by bilateral axotomy of the olfactory nerves. We found that axotomy induces specific- neuronal death through apoptosis between 24 and 48h post-injury. In concordance, there was a progressive decrease of the mature-ORN marker OMP until it was completely absent 72h post-injury. On the other hand, neurogenesis was evident 48h post-injury by an increase in the number of proliferating basal cells as well as NCAM-180– GAP-43+ immature neurons. Mature ORNs were replenished 21 days post-injury and the olfactory function was partially recovered, indicating that new ORNs were integrated into the olfactory bulb glomeruli. Throughout the regenerative process no changes in the expression pattern of the neurotrophin Brain Derivate Neurotrophic Factor were observed. Taken together, this work provides a sequential analysis of the neurodegenerative and subsequent regenerative processes that take place in the OE following axotomy. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1308–1320, 2017. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis
Autor:Cervino, A.S.; Paz, D.A.; Frontera, J.L.
Filiación:Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
Palabras clave:neural stem cells; neurodifferentiation; neurogenesis; olfaction; olfactory receptor neurons; neuromodulin; neurotrophic factor; neurotrophin; brain derived neurotrophic factor; caspase 3; cytokeratin 2; nerve cell adhesion molecule; neuromodulin; olfactory marker protein; animal experiment; animal tissue; apoptosis; Article; axotomy; basal cell; cell proliferation; controlled study; embryo; nerve cell degeneration; nerve cell differentiation; nerve cell necrosis; nerve regeneration; nervous system development; nonhuman; olfactory bulb; olfactory epithelium; olfactory nerve; olfactory receptor neuron; priority journal; smelling; Xenopus laevis; animal; cell differentiation; convalescence; gene expression regulation; metabolism; nerve degeneration; odor; olfactory mucosa; olfactory nerve injury; pathology; physiology; regeneration; time factor; Xenopus laevis; Animals; Axotomy; Brain-Derived Neurotrophic Factor; Caspase 3; Cell Differentiation; Cell Proliferation; GAP-43 Protein; Gene Expression Regulation; Keratin-2; Nerve Degeneration; Neural Cell Adhesion Molecules; Olfactory Marker Protein; Olfactory Mucosa; Olfactory Nerve Injuries; Recovery of Function; Regeneration; Smell; Time Factors; Xenopus laevis
Año:2017
Volumen:77
Número:11
Página de inicio:1308
Página de fin:1320
DOI: http://dx.doi.org/10.1002/dneu.22513
Título revista:Developmental Neurobiology
Título revista abreviado:Dev. Neurobiol.
ISSN:19328451
CAS:brain derived neurotrophic factor, 218441-99-7; caspase 3, 169592-56-7; Brain-Derived Neurotrophic Factor; Caspase 3; GAP-43 Protein; Keratin-2; Neural Cell Adhesion Molecules; Olfactory Marker Protein
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19328451_v77_n11_p1308_Cervino

Referencias:

  • Bakos, S.R., Schwob, J.E., Costanzo, R.M., Matrix metalloproteinase-9 and −2 expression in the olfactory bulb following methyl bromide gas exposure (2011) Chem Senses, 35, pp. 655-661
  • Bakos, S.R., Costanzo, R.M., Matrix metalloproteinase-9 is associated with acute inflammation after olfactory injury (2011) Neuroreport, 22, pp. 539-543
  • Borders, A.S., Getchell, M.L., Etscheidt, J.T., van Rooijen, N., Cohen, D.A., Gretchell, T.V., Macrophage depletion in the murine olfactory epithelium leads to increased neuronal death and decreased neurogenesis (2007) J Comp Neurol, 501, pp. 206-218
  • Brann, J.H., Firestein, S.J., A lifetime of neurogenesis in the olfactory system (2014) Front Neurosci, 8, p. 182
  • Brann, J.H., Ellis, D.P., Ku, B.S., Spinazzi, E.F., Firestein, S., Injury in aged animals robustly activates quiescent olfactory neural stem cells (2015) Front Neurosci, 9, p. 367
  • Calof, A.L., Chikaraishi, D.M., Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro (1989) Neuron, 3, pp. 115-127
  • Calof, A.L., Rim, P.C., Askins, K.J., Mumm, J.S., Gordon, M.K., Iannuzzelli, P., Shou, J., Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium (1998) Ann N Y Acad Sci, 855, pp. 226-229
  • Clevenger, A.C., Salcedo, E., Jones, K.R., Restrepo, D., BDNF promoter-mediated beta-galactosidase expression in the olfactory epithelium and bulb (2008) Chem Senses, 33, pp. 531-539
  • Diaz, D., Gomez, C., Munoz-Castaneda, R., Baltanas, F., Alonso, J.R., Weruaga, E., The olfactory system as a puzzle: playing with its pieces (2013) Anat Rec (Hoboken), 296, pp. 1383-1400
  • Frontera, J.L., Cervino, A.S., Jungblut, L.D., Paz, D.A., Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis (2014) Ann Anat, 198, pp. 41-48
  • Frontera, J.L., Raices, M., Cervino, A.S., Pozzi, A.G., Paz, D.A., Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage (2016) J Chem Neuroanat, 77, pp. 1-9
  • Graziadei, G.A., Graziadei, P.P., Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy (1979) J Neurocytol, 8, pp. 197-213
  • Gurdon, J.B., Normal table of Xenopus laevis (Daudin): edited by P.D. Nieuwkoop and J. Faber Garland Publishing (1994) Trends Genet., 11, p. 418
  • Hassenklover, T., Schwartz, P., Schild, D., Manzini, I., Purinergic signaling regulates cell proliferation of olfactory epithelium progenitors (2009) Stem Cells, 27, pp. 2022-2031
  • Hassenklover, T., Manzini, I., The olfactory system as a model to study axonal growth patterns and morphology in vivo (2014) J Vis Exp
  • Holcomb, J.D., Mumm, J.S., Calof, A.L., Apoptosis in the neuronal lineage of the mouse olfactory epithelium: regulation in vivo and in vitro (1995) Dev Biol, 172, pp. 307-323
  • Huard, J.M., Schwob, J.E., Cell cycle of globose basal cells in rat olfactory epithelium (1995) Dev Dyn, 203, pp. 17-26
  • Im, S., Moon, C., Transcriptional regulatory network during development in the olfactory epithelium (2015) BMB Rep, 48, pp. 599-608
  • Kam, J.W., Raja, R., Cloutier, J.F., Cellular and molecular mechanisms regulating embryonic neurogenesis in the rodent olfactory epithelium (2014) Int J Dev Neurosci, 37, pp. 76-86
  • Lavoie, J., Astorga, G.A., Segal-Gavish, H., Wu, Y.C., Chung, Y., Cascella, N.G., Sawa, A., Ishizuka, K., The olfactory neural epithelium as a tool in neuroscience (2017) Trends Mol Med, 23, pp. 100-103
  • Leung, C.T., Coulombe, P.A., Reed, R.R., Contribution of olfactory neural stem cells to tissue maintenance and regeneration (2007) Nat Neurosci, 10, pp. 720-726
  • Martoja, R., Martoja-Pierson, M., Métodos generales de tinción (1970) Técnicas de Histología Animal, pp. 69-86. , In, Barcelona, Toray-Masson SA
  • Nezlin, L.P., Schild, D., Structure of the olfactory bulb in tadpoles of Xenopus laevis (2000) Cell Tissue Res, 302, pp. 21-29
  • Packard, A.I., Lin, B., Schwob, J.E., Sox2 and Pax6 play counteracting roles in regulating neurogenesis within the murine olfactory epithelium (2016) PLoS One, 11
  • Paz, D.A., Alonso, D.G., Pisano, A., Casco, V.H., Knudsen, K.A., Peralta Soler, A., Expression of isoforms of the neural cell adhesion molecule (NCAM) and polysialic acid during the development of the Bufo arenarum olfactory system (1995) Int J Dev Biol, 39, pp. 1005-1013
  • Quick, Q.A., Serrano, E.E., Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear (2007) Int J Dev Biol, 51, pp. 201-209
  • Schwob, J.E., Szumowski, K.E., Stasky, A.A., Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival (1992) J Neurosci, 12, pp. 3896-3919
  • Schwob, J.E., Restoring olfaction: a view from the olfactory epithelium (2005) Chem Senses, 30, pp. i131-i132
  • Schwob, J.E., Jang, W., Holbrook, E.H., Lin, B., Herrick, D.B., Peterson, J.N., Hewitt Coleman, J., Stem and progenitor cells of the mammalian olfactory epithelium: taking poietic license (2017) J Comp Neurol, 525, pp. 1034-1054
  • Suzuki, J., Sakurai, K., Yamazaki, M., Abe, M., Inada, H., Sakimura, K., Katori, Y., Osumi, N., Horizontal basal cell-specific deletion of pax6 impedes recovery of the olfactory neuroepithelium following severe injury (2015) Stem Cells Dev, 24, pp. 1923-1933
  • Takami, S., Hasegawa, R., Nishiyama, F., The roles of brain-derived neurotrophic factor in the development of nasal chemoreceptor neurons (2005) Chem Senses, 30, pp. i121-i122
  • Taniguchi, K., Phylogenic studies on the olfactory system in vertebrates (2014) J Vet Med Sci, 76, pp. 781-788
  • Verhaagen, J., Oestreicher, A.B., Gispen, W.H., Margolis, F.L., The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats (1989) J Neurosci, 9, pp. 683-691
  • Weiler, E., Farbman, A.I., Supporting cell proliferation in the olfactory epithelium decreases postnatally (1998) Glia, 22, pp. 315-328
  • White, E.J., Kounelis, S.K., Byrd-Jacobs, C.A., Plasticity of glomeruli and olfactory-mediated behavior in zebrafish following detergent lesioning of the olfactory epithelium (2015) Neuroscience, 284, pp. 622-631
  • Wu, M., Gerhart, J., Raising Xenopus in the laboratory (1991) Methods Cell Biol, 36, pp. 3-18
  • Yoshino, J., Tochinai, S., Functional regeneration of the olfactory bulb requires reconnection to the olfactory nerve in Xenopus larvae (2006) Dev Growth Differ, 48, pp. 15-24
  • Yu, C.R., Wu, Y., Regeneration and rewiring of rodent olfactory sensory neurons (2017) Exp. Neurol, Pt 3, pp. 395-408
  • Zupanc, G.K., Sîrbulescu, R.F., Cell replacement therapy, lessons from teleost fish (2015) Exp Neurol, 6, pp. 263-272

Citas:

---------- APA ----------
Cervino, A.S., Paz, D.A. & Frontera, J.L. (2017) . Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis. Developmental Neurobiology, 77(11), 1308-1320.
http://dx.doi.org/10.1002/dneu.22513
---------- CHICAGO ----------
Cervino, A.S., Paz, D.A., Frontera, J.L. "Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis" . Developmental Neurobiology 77, no. 11 (2017) : 1308-1320.
http://dx.doi.org/10.1002/dneu.22513
---------- MLA ----------
Cervino, A.S., Paz, D.A., Frontera, J.L. "Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis" . Developmental Neurobiology, vol. 77, no. 11, 2017, pp. 1308-1320.
http://dx.doi.org/10.1002/dneu.22513
---------- VANCOUVER ----------
Cervino, A.S., Paz, D.A., Frontera, J.L. Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis. Dev. Neurobiol. 2017;77(11):1308-1320.
http://dx.doi.org/10.1002/dneu.22513