Artículo

Martínez Casillas, D.C.; Longinotti, M.P.; Bruno, M.M.; Vaca Chávez, F.; Acosta, R.H.; Corti, H.R. "Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes" (2018) Journal of Physical Chemistry C. 122(6):3638-3647
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The diffusion of alkaline chlorides (LiCl, KCl, and CsCl) and water in mesoporous silica samples with pore sizes covering the range from micropores (2 nm) up to mesopores larger than 30 nm have been measured by resorting to a simple diffusional technique in the case of electrolytes and 1H NMR in the case of water. The morphology of the silica samples varies from a microporous structure, an interconnected network of pores, and typical mesoporous materials with ink-bottle pores, with increasing pore size. The release of electrolytes from the silica as a function of time exhibits two differentiated regimes, at short and long times, which correlates quite well with the size of the pores and that of necks of the pores, respectively. The diffusion of water inside the pores follows the same trend with pore size that the diffusion of electrolytes, indicating a coupling between the ions and water diffusional mobilities. The tortuosity effect on the diffusion of all studied electrolytes and water shows a monotonic slight increase with decreasing diameter for pores larger than 5 nm, while the tortuosity factor increases markedly for smaller pores. In microporous and mesoporous silica with pore sizes below 10 nm, the tortuosity factor of Li+ ion is much larger than those for K+ and Cs+ ions, since its diffusion is hindered by a stronger electrostatic interaction with the ionizable silanol groups on the pore wall; and also larger than that for water diffusion which it is retarded by a weaker hydrogen bond interaction with the silanol groups. The differences in tortuosity factors among alkaline chlorides and water become negligible for pore sizes larger than 10 nm. The spin-lattice relaxation time measurements of 1H-water and Li+ ions confirm this behavior. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes
Autor:Martínez Casillas, D.C.; Longinotti, M.P.; Bruno, M.M.; Vaca Chávez, F.; Acosta, R.H.; Corti, H.R.
Filiación:Instituto de Química Física de Los Materiales Medio Ambiente y Energía, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avda. General Paz 1499, San Martín, Buenos Aires, B1650WAB, Argentina
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, Medina Allende s/n, Córdoba, X5016LAE, Argentina
Palabras clave:Bottles; Cesium compounds; Chlorine compounds; Diffusion; Electrolytes; Hydrogen bonds; Ions; Lithium compounds; Microporosity; Microporous materials; Pore size; Potassium compounds; Silica; Alkaline chlorides; Diffusion of water; Diffusional mobility; Hydrogen bond interaction; Interconnected network; Mesoporous Silica; Micro-porous structure; Tortuosity factor; Mesoporous materials
Año:2018
Volumen:122
Número:6
Página de inicio:3638
Página de fin:3647
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b11555
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v122_n6_p3638_MartinezCasillas

Referencias:

  • Hansen, E.W., Schmidt, R., Stöcker, M., Akporiaye, D., Self-diffusion coefficient of water in mesoporous MCM-41 materials determined by 1H nuclear magnetic resonance spin-echo measurements (1995) Microporous Mater., 5, pp. 143-150
  • D'Agostino, C., Mitchell, J., Gladden, L.F., Mantle, M.D., Hydrogen Bonding Network Disruption in mesoporous catalyst supports probed by PFG-NMR diffusometry and NMR relaxometry (2012) J. Phys. Chem. C, 116, pp. 8975-8982
  • Kiwilsza, A., Pajzderska, A., Gonzalez, M.A., Mielcarek, J., Wasicki, J., QENS and RMN study of water dynamics in SBA-15 with a low water content (2015) J. Phys. Chem. C, 119, pp. 16578-16586
  • Takahara, S., Sumiyama, N., Kittaka, S., Yamaguchi, T., Bellissent-Funel, M.C., Neutron scattering study on dynamics of water molecules in MCM-41. 2. Determination of translational diffusion coefficient (2005) J. Phys. Chem. B, 109, pp. 11231-11239
  • Mamontov, E., Cole, D.R., Dai, S., Pawel, M.D., Liang, C.D., Jenkins, T., Gasparovic, G., Kintzel, E., Dynamics of water in LiCl and CaCl2 aqueous solutions confined in silica matrices: A backscattering neutron spectroscopy study (2008) Chem. Phys., 352, pp. 117-124
  • Bourg, I.C., Steefel, C.I., Molecular dynamics simulations of water structure and diffusion in silica nanorpores (2012) J. Phys. Chem. C, 116, pp. 11556-11564
  • Argyris, D., Cole, D.R., Striolo, A., Ion-specific effects under confinement: The role of interfacial water (2010) ACS Nano, 4, pp. 2035-2042
  • Ho, T.A., Argyris, D., Cole, D.R., Striolo, A., Aqueous NaCl and CsCl solutions confined in crystalline slit-shaped silica nanopores of varying degree of protonation (2012) Langmuir, 28, pp. 1256-1266
  • Bonnaud, P.A., Coasne, B., Pellenq, J.-M., Solvated calcium ions in charged silica nanopores (2012) J. Chem. Phys., 137, p. 064706
  • Gonzalez Solveyra, E., De La Llave, E., Molinero, V., Soler Illia, G.J.A.A., Scherlis, D.A., Structure, dynamics, and phase behavior of water in TiO2 nanopores (2013) J. Phys. Chem. C, 117, pp. 3330-3342
  • Renou, R., Szymczyk, A., Ghoufi, A., Water confinement in nanoporous silica materials (2014) J. Chem. Phys., 140, p. 044704
  • Renou, R., Szymczyk, A., Ghoufi, A., Ultraconfinement of aqueous electrolytic solutions within hydrophilic nanotubes (2014) RSC Adv., 4, pp. 32755-32761
  • Videla, P.E., Sala, J., Martí, J., Guardia, E., Laria, D., Aqueous electrolytes confined within functionalized silica nanopores (2011) J. Chem. Phys., 135, p. 104503
  • Thompson, H., Soper, A.K., Ricci, M.A., Bruni, F., Skipper, N.T., The three-dimensional structure of water confined in nanoporous Vycor glass (2007) J. Phys. Chem. B, 111, pp. 5610-5620
  • Zhu, H., Ghoufi, A., Szymczyk, A., Balannec, B., Morineau, D., Computation of the hindrance factor for the diffusion for nanoconfined ions: Molecular dynamics simulations versus continuum-based models (2012) Mol. Phys., 110, pp. 1107-1114
  • Balme, S., Picaud, F., Manghi, M., Palmeri, J., Bechelany, M., Cabello-Aguilar, S., Abou-Chaaya, A., Janot, J.M., Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: Experiment, theory and simulation (2015) Sci. Rep., 5, p. 10135
  • Takahashi, R., Sato, S., Sodesawa, T., Nishida, H., Effect of pore size on the liquid-phase pore diffusion of niquel nitrate (2002) Phys. Chem. Chem. Phys., 4, pp. 3800-3805
  • Kunetz, J., Hench, L., Restricted diffusion of chromium nitrate salt solutions into porous sol-gel silica monoliths (1998) J. Am. Ceram. Soc., 81, pp. 877-884
  • Koone, N.D., Guo, J.D., Zerda, T.W., Diffusion of Er3+ in porous sol-gel glass (1997) J. Non-Cryst. Solids, 211, pp. 150-157
  • http://www.fujisilysia.com/products/cariact/; Barrett, E.P., Joyner, L.G., Halenda, P.P., The determination of pore volume in porous substances. I. Computations from nitrogen isotherms (1951) J. Am. Chem. Soc., 73, pp. 373-380
  • Broekhoff, J.C.P., De Broer, J.H., Studies on pore systems in catalysis. XII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores A. An analysis of the capillary evaporation process (1968) J. Catal., 10, pp. 368-376
  • Sonnefeld, J., Göbel, A., Vogelsberger, W., Surface charge density on spherical silica particles in aqueous alkali chloride solutions. Part 1. Experimental results (1995) Colloid Polym. Sci., 273, pp. 926-931
  • Sonnefeld, J., Löbbus, M., Vogelsberger, W., Determination of electric double layer parameters for spherical silica particles under application of the triple layer model using surface charge density data and results of electrokinetic sonic amplitude measurements (2001) Colloids Surf., A, 195, pp. 215-225
  • Dove, P.M., Craven, C.M., Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions (2005) Geochim. Cosmochim. Acta, 69, pp. 4963-4970
  • Salis, A., Parsons, D.F., Boström, M., Medda, L., Barse, B., Ion specific surface charge density of SBA-15 mesoporous silica (2010) Langmuir, 26, pp. 2484-2490
  • Robinson, R.A., Stokes, R.H., (1955) Electrolyte Solutions, p. 452. , Butterworths Scientific Pub. London, Appendix 6.1
  • Wu, Y.C., Koch, W.K., Hamer, W.J., Kay, R.L., Review of electrolytic conductance standards (1987) J. Solution Chem., 16, pp. 985-997
  • Grathwohl, P., (1998) Diffusion in Natural Porous Media: Contaminant Transport, Sorption/ Desorption and Dissolution Kinetics, , Springer: New York
  • Crank, J., (1976) The Mathematics of Diffusion, p. 91. , Clarendox Press: Oxford, U.K
  • Carr, H., Purcell, E.M., Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments (1954) Phys. Rev., 94, pp. 630-638
  • Meiboom, S., Gill, D., Modified Spin-Echo Method for Measuring Nuclear Relaxation Times (1958) Rev. Sci. Instrum., 29, pp. 688-691
  • Casanova, F., Perlo, J., Blümich, B., (2011) Single-Sided NMR, , Springer: New York
  • (2008), BP Chemical Limited. Supported heteropolyacid catalysts.Patent EP 1982761 A1, published October 22; Hamasaka, G., Kawamorita, S., Ochida, A., Akiyama, R., Hara, K., Fukuoka, A., Asakura, K., Sawamura, M., Synthesis of silica-supported compact phosphines and their application to rhodium-catalyzed hydrosilylation of hindered ketones with triorganosilanes (2008) Organometallics, 27, pp. 6495-6506
  • Yang, G., Wang, D., Yoneyama, Y., Tan, Y., Tsubaki, N., Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis (2012) Chem. Commun., 48, pp. 1263-1265
  • Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) (2015) Pure Appl. Chem., 87, pp. 1051-1069
  • Grosman, A., Ortega, C., Capillary condensation in porous materials. Hysteresis and interaction mechanism without pore blocking/percolation process (2008) Langmuir, 24, pp. 3977-3986
  • Rouquerol, F., Rouquerol, J., Sing, K., (1999) Adsorption by Powders and Porous Solids. Principles, Methodology and Applications, , Academic Press: London
  • Groen, J.C., Pérez-Ramírez, J., Critical appraisal of mesopore characterization by adsorption analysis (2004) Appl. Catal., A, 268, pp. 121-125
  • Fu, Q., Bao, X., Surface chemistry and catalysis confined under two-dimensional materials (2017) Chem. Soc. Rev., 46, pp. 1842-1874
  • Fan, J., Yu, C., Gao, F., Lei, J., Tian, B., Wang, L., Luo, Q., Zhao, D., Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties (2003) Angew. Chem., Int. Ed., 42, pp. 3146-3150
  • Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J., Thommes, M., Recent advances in the textural characterization of hierarchically nanoporous materials (2017) Chem. Soc. Rev., 46, pp. 389-414
  • Kruk, M., Jaroniec, M., Argon adsorption at 77 K as a useful tool for the elucidation of pore connectivity in ordered materials with large cagelike mesopores (2003) Chem. Mater., 15, pp. 2942-2949
  • Sahai, N., Sverjensky, D.A., Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data (1997) Geochim. Cosmochim. Acta, 61, pp. 2801-2826
  • Holz, M., Heil, S.R., Sacco, A., Temperature-dependence self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements (2000) Phys. Chem. Chem. Phys., 2, pp. 4740-4742
  • Mills, R., Self-diffusion in normal and heavy water in the range 1-45 °c (1973) J. Phys. Chem., 77, pp. 685-688
  • Mitchell, J., Fordham, E.J., Sodium-23 NMR in porous media (2017) Microporous Mesoporous Mater.
  • Kausik, R., Fellah, K., Yang, D.M., Sodium NMR relaxation in mesoporous systems (2017) Microporous Mesoporous Mater.
  • Brownstein, K.R., Tarr, C.E., Spin lattice relaxation in a system governed by diffusion (1977) J. Magn. Reson., 26, pp. 17-24

Citas:

---------- APA ----------
Martínez Casillas, D.C., Longinotti, M.P., Bruno, M.M., Vaca Chávez, F., Acosta, R.H. & Corti, H.R. (2018) . Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes. Journal of Physical Chemistry C, 122(6), 3638-3647.
http://dx.doi.org/10.1021/acs.jpcc.7b11555
---------- CHICAGO ----------
Martínez Casillas, D.C., Longinotti, M.P., Bruno, M.M., Vaca Chávez, F., Acosta, R.H., Corti, H.R. "Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes" . Journal of Physical Chemistry C 122, no. 6 (2018) : 3638-3647.
http://dx.doi.org/10.1021/acs.jpcc.7b11555
---------- MLA ----------
Martínez Casillas, D.C., Longinotti, M.P., Bruno, M.M., Vaca Chávez, F., Acosta, R.H., Corti, H.R. "Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes" . Journal of Physical Chemistry C, vol. 122, no. 6, 2018, pp. 3638-3647.
http://dx.doi.org/10.1021/acs.jpcc.7b11555
---------- VANCOUVER ----------
Martínez Casillas, D.C., Longinotti, M.P., Bruno, M.M., Vaca Chávez, F., Acosta, R.H., Corti, H.R. Diffusion of Water and Electrolytes in Mesoporous Silica with a Wide Range of Pore Sizes. J. Phys. Chem. C. 2018;122(6):3638-3647.
http://dx.doi.org/10.1021/acs.jpcc.7b11555