Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In the present study, we report the photophysical properties of colloidal ensembles of silicon quantum dots (SiDs) and gold nanoparticles (AuNPs), particularly focusing on investigating metal-enhanced photoluminescence (PL) effects. AuNPs with different sizes, (27 ± 10) and (88 ± 12) nm, and ca. 3.4 nm-size SiD with different surface groups, either covered with an oxidized surface film bearing Si-OH surface groups or grafted with propylamine leading to Si-(CH2)2-CH2-NH2 terminal functionalities, were tested to evaluate the gold enhancement of SiD PL. The NPs were characterized by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma atomic emission spectroscopy, and gel electrophoresis, whereas the photophysical properties of the NPs, alone and in colloidal ensembles at different concentrations, were investigated by absorption and steady-state and time-resolved PL studies, including quantum yield determinations. Enhanced absorption and PL of SiDs in the presence of AuNPs was evidenced, leading in the most favorable cases to ca. 10 times increase in SiD brightness. This effect depends strongly on the SiD surface coating and its interaction with citrate-capped gold surfaces, where these interactions govern particle aggregation and relative distance distributions among SiDs and AuNPs in the ensembles. The nature of these interactions and how they affect metal-enhanced luminescence is thoroughly discussed. The present study provides significant information on the effect of SiD surface groups and surface charge on the metal-enhanced luminescence phenomenon in colloidal aqueous suspensions. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating
Autor:Romero, J.J.; Hodak, J.H.; Rodríguez, H.B.; Gonzalez, M.C.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de la Plata, La Plata, B1904, Argentina
Departamento de Química Inorgánica, Analítica y Química Física and INQUIMAE (UBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Instituto de Química Biológica (IQUIBICEN), CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Agglomeration; Amines; Atomic emission spectroscopy; Electrophoresis; Fiber optic sensors; Fourier transform infrared spectroscopy; Gold coatings; Gold nanoparticles; High resolution transmission electron microscopy; Inductively coupled plasma; Metal nanoparticles; Metals; Nanocrystals; Photoluminescence; Semiconductor quantum dots; Silicon; Suspensions (fluids); X ray photoelectron spectroscopy; Colloidal ensembles; Enhanced absorption; Gel electrophoresis; Inductively coupled plasma atomic emission spectroscopy; Metal enhanced luminescences; Particle aggregation; Photophysical properties; Silicon quantum dots; Silicon compounds
Año:2018
Volumen:122
Número:47
Página de inicio:26865
Página de fin:26875
DOI: http://dx.doi.org/10.1021/acs.jpcc.8b09310
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v122_n47_p26865_Romero

Referencias:

  • Zhang, Y., Dragan, A., Geddes, C.D., Wavelength Dependence of Metal-Enhanced Fluorescence (2009) J. Phys. Chem. C, 113, pp. 12095-12100
  • Geddes, C.D., Lakowicz, J.R., Metal-Enhanced Fluorescence (2002) J. Fluoresc., 12, pp. 121-129
  • Zhang, Y., Aslan, K., Previte, M.J.R., Geddes, C.D., Metal-Enhanced e -Type Fluorescence (2008) Appl. Phys. Lett., 92, p. 013905
  • Lee, J., Lee, S., Jen, M., Pang, Y., Metal-Enhanced Fluorescence: Wavelength-Dependent Ultrafast Energy Transfer (2015) J. Phys. Chem. C, 119, pp. 23285-23291
  • Kotkowiak, M., Dudkowiak, A., Multiwavelength Excitation of Photosensitizers Interacting with Gold Nanoparticles and Its Impact on Optical Properties of Their Hybrid Mixtures (2015) Phys. Chem. Chem. Phys., 17, pp. 27366-27372
  • Kang, K.A., Wang, J., Jasinski, J.B., Achilefu, S., Fluorescence Manipulation by Gold Nanoparticles: From Complete Quenching to Extensive Enhancement (2011) J. Nanobiotechnol., 9, p. 16
  • Chen, J., Jin, Y., Fahruddin, N., Zhao, J.X., Development of Gold Nanoparticle-Enhanced Fluorescent Nanocomposites (2013) Langmuir, 29, pp. 1584-1591
  • Vukovic, S., Corni, S., Mennucci, B., Fluorescence Enhancement of Chromophores Close to Metal Nanoparticles. Optimal Setup Revealed by the Polarizable Continuum Model (2009) J. Phys. Chem. C, 113, pp. 121-133
  • Abadeer, N.S., Brennan, M.R., Wilson, W.L., Murphy, C.J., Distance and Plasmon Wavelength Dependent Fluorescence of Molecules Bound to Silica-Coated Gold Nanorods (2014) ACS Nano, 8, pp. 8392-8406
  • Tsung Chen, I., Chang, P.-H., Chang, Y.-C., Guo, T.-F., Lighting Up Ultraviolet Fluorescence from Chicken Albumen Through Plasmon Resonance Energy Transfer of Gold Nanoparticles (2013) Sci. Rep., 3, p. 1505
  • Harun, N.A., Benning, M.J., Horrocks, B.R., Fulton, D.A., Gold Nanoparticle-Enhanced Luminescence of Silicon Quantum Dots Co-Encapsulated in Polymer Nanoparticles (2013) Nanoscale, 5, pp. 3817-3827
  • Guidelli, E.J., Baffa, O., Clarke, D.R., Enhanced UV Emission from Silver/ZnO and Gold/ZnO Core-Shell Nanoparticles: Photoluminescence, Radioluminescence, and Optically Stimulated Luminescence (2015) Sci. Rep., 5, p. 14004
  • Nepal, D., Drummy, L.F., Biswas, S., Park, K., Vaia, R.A., Large Scale Solution Assembly of Quantum Dot-Gold Nanorod Architectures with Plasmon Enhanced Fluorescence (2013) ACS Nano, 7, pp. 9064-9074
  • Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., Gonzalez, M.C., Silicon Nanoparticle Photophysics and Singlet Oxygen Generation (2010) Langmuir, 26, pp. 10953-10960
  • Lillo, C.R., Romero, J.J., Portolés, M.L., Diez, R.P., Caregnato, P., Gonzalez, M.C., Organic coating of 1-2-nm-size silicon nanoparticles: Effect on particle properties (2015) Nano Res., 8, pp. 2047-2062
  • Khlebtsov, N., Dykman, L., Biodistribution and Toxicity of Engineered Gold Nanoparticles: A Review of in Vitro and in Vivo Studies (2011) Chem. Soc. Rev., 40, pp. 1647-1671
  • Chen, C.-C., Kuo, P.-L., Cheng, Y.-C., Spherical Aggregates Composed of Gold Nanoparticles (2009) Nanotechnology, 20, p. 055603
  • Yonezawa, T., Onoue, S.-Y., Kunitake, T., Growth of Closely Packed Layers of Gold Nanoparticles on an Aligned Ammonium Surface (1998) Adv. Mater., 10, pp. 414-416
  • Neiner, D., Chiu, H.W., Kauzlarich, S.M., Low-Temperature Solution Route to Macroscopic Amounts of Hydrogen Terminated Silicon Nanoparticles (2006) J. Am. Chem. Soc., 128, pp. 11016-11017
  • Rodríguez Sartori, D., Lillo, C.R., Romero, J.J., Dell Arciprete, M.L., Minán, A., Fernández Lorenzo De Mele, M., Gonzalez, M.C., PEG-Coated Blue-Emitting Silicon Dots with Improved Properties for Uses in Aqueous and Biological Environments (2016) Nanotechnology, 25, p. 4757040
  • Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S., Sinke, W.C., Spaepen, F., Density of Amorphous Si (1994) Appl. Phys. Lett., 64, pp. 437-439
  • Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G., Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra (2007) Anal. Chem., 79, pp. 4215-4221
  • Turkevich, J., Stevenson, P.C., Hillier, J., A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold (1951) Discuss. Faraday Soc., 11, pp. 55-75
  • Brown, K.R., Natan, M.J., Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces (1998) Langmuir, 14, pp. 726-728
  • Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm Sized Silicon Nanoparticles: A Surface-Dependent System (2013) Chem. Mater., 25, pp. 3488-3498
  • (2012) NIST X-ray Photoelectron Spectroscopy Database, , National Institute of Standards and Technology. version 4.1, Gaithersburg, MD
  • Llansola Portolés, M.J., Pis Diez, R., Dell'Arciprete, M.L., Caregnato, P., Romero, J.J., Mártire, D.O., Azzaroni, O., Gonzalez, M.C., Understanding the Parameters Affecting the Photoluminescence of Silicon Nanoparticles (2012) J. Phys. Chem. C, 116, pp. 11315-11325
  • Boal, A.K., Ilhan, F., Derouchey, J.E., Thurn-Albrecht, T., Russell, T.P., Rotello, V.M., Self-Assembly of Nanoparticles into Structured Spherical and Network Aggregates (2000) Nature, 404, pp. 746-748
  • Casaletto, M.P., Longo, A., Martorana, A., Prestianni, A., Venezia, A.M., XPS Study of Supported Gold Catalysts: The Role of Au0 and Au+δ Species as Active Sites (2006) Surf. Interface Anal., 38, pp. 215-218
  • Kumar, A., Mandal, S., Selvakannan, P.R., Pasricha, R., Mandale, A.B., Sastry, M., Investigation into the Interaction between Surface-Bound Alkylamines and Gold Nanoparticles (2003) Langmuir, 19, pp. 6277-6282
  • Sylvestre, J.-P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M., Luong, J.H.T., Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media (2004) J. Phys. Chem. B, 108, pp. 16864-16869
  • Mohrhusen, L., Osmić, M., Sterical Ligand Stabilization of Nanocrystals versus Electrostatic Shielding by Ionic Compounds: A Principle Model Study with TEM and XPS (2017) RSC Adv., 7, pp. 12897-12907
  • Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , Springer
  • Ribeiro, T., Baleizao, C., Farinha, J.P.S., Artefact-Free Evaluation of Metal Enhanced Fluorescence in Silica Coated Gold Nanoparticles (2017) Sci. Rep., 7, pp. 1-12
  • Chen, S., Yu, Y.-L., Wang, J.-H., Inner Filter Effect-Based Fluorescent Sensing Systems: A Review (2018) Anal. Chim. Acta, 999, pp. 13-26
  • Kubista, M., Sjöback, R., Eriksson, S., Albinsson, B., Experimental Correction for the Inner-Filter Effect in Fluorescence Spectra (1994) Analyst, 119, pp. 417-419
  • Ray, K., Badugu, R., Lakowicz, J.R., Distance-Dependent Metal-Enhanced Fluorescence from Langmuir-Blodgett Monolayers of Alkyl-NBD Derivatives on Silver Island Films (2006) Langmuir, 26, pp. 8374-8378
  • Asian, K., Lakowicz, J.R., Szmacinski, H., Geddes, C.D., Metal-Enhanced Fluorescence Solution-Based Sensing Platform (2004) J. Fluoresc., 14, pp. 677-679
  • Hoft, R.C., Ford, M.J., McDonagh, A.M., Cortie, M.B., Adsorption of Amine Compounds on the Au(111) Surface: A Density Functional Study (2007) J. Phys. Chem. C, 111, pp. 13886-13891
  • Pong, B.-K., Lee, J.Y., Trout, B.L., (2006) A Computational Study to Understand the Surface Reactivity of Gold Nanoparticles with Amines and DNA, , http://hdl.handle.net/1721.1/30380, (accessed Nov 15, 2018)
  • Sainsbury, T., Ikuno, T., Okawa, D., Pacilé, D., Fréchet, J.M.J., Zettl, A., Self-Assembly of Gold Nanoparticles at the Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes (2007) J. Phys. Chem. C, 111, pp. 12992-12999
  • Dharanivasan, G., Rajamuthuramalingam, T., Michael Immanuel Jesse, D., Rajendiran, N., Kathiravan, K., Gold Nanoparticles Assisted Characterization of Amine Functionalized Polystyrene Multiwell Plate and Glass Slide Surfaces (2015) Appl. Nanosci., 5, pp. 39-50
  • Ghosh, S.K., Pal, T., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications (2007) Chem. Rev., 107, pp. 4797-4862
  • Shipway, A.N., Lahav, M., Gabai, R., Willner, I., Investigations into the Electrostatically Induced Aggregation of Au Nanoparticles (2000) Langmuir, 16, pp. 8789-8795
  • Xia, B., He, F., Li, L., Metal-Enhanced Fluorescence Using Aggregated Silver Nanoparticles (2014) Colloids Surf., A, 444, pp. 9-14
  • Martín-Molina, A., Maroto-Centeno, J.A., Hidalgo-Álvarez, R., Quesada-Pérez, M., Testing One Component Plasma Models on Colloidal Overcharging Phenomena (2006) J. Chem. Phys., 125, p. 144906
  • Kim, T., Lee, C.-H., Joo, S.-W., Lee, K., Kinetics of Gold Nanoparticle Aggregation: Experiments and Modeling (2008) J. Colloid Interface Sci., 318, pp. 238-243
  • Liang, Y., Hilal, N., Langston, P., Starov, V., Interaction Forces between Colloidal Particles in Liquid: Theory and Experiment (2007) Adv. Colloid Interface Sci., 134-135, pp. 151-166

Citas:

---------- APA ----------
Romero, J.J., Hodak, J.H., Rodríguez, H.B. & Gonzalez, M.C. (2018) . Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating. Journal of Physical Chemistry C, 122(47), 26865-26875.
http://dx.doi.org/10.1021/acs.jpcc.8b09310
---------- CHICAGO ----------
Romero, J.J., Hodak, J.H., Rodríguez, H.B., Gonzalez, M.C. "Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating" . Journal of Physical Chemistry C 122, no. 47 (2018) : 26865-26875.
http://dx.doi.org/10.1021/acs.jpcc.8b09310
---------- MLA ----------
Romero, J.J., Hodak, J.H., Rodríguez, H.B., Gonzalez, M.C. "Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating" . Journal of Physical Chemistry C, vol. 122, no. 47, 2018, pp. 26865-26875.
http://dx.doi.org/10.1021/acs.jpcc.8b09310
---------- VANCOUVER ----------
Romero, J.J., Hodak, J.H., Rodríguez, H.B., Gonzalez, M.C. Silicon Quantum Dots Metal-Enhanced Photoluminescence by Gold Nanoparticles in Colloidal Ensembles: Effect of Surface Coating. J. Phys. Chem. C. 2018;122(47):26865-26875.
http://dx.doi.org/10.1021/acs.jpcc.8b09310