Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This paper presents theoretical results on the adsorption of polyelectrolyte chains on surfaces with opposite charge and nanoscale curvature. The theory predicts that increasing the surface curvature can either increase or decrease the amount of adsorbed polyelectrolyte, depending on the type of curvature (convex or concave) and whether the polyelectrolyte undercompensates or overcompensates the initial charge of the substrate. For small bulk salt concentration (10-4 M), increasing the curvature of the surface displaces the adsorption equilibrium of the polyelectrolyte in order to decrease the absolute value of the effective charge density for concave surfaces (nanochannels) or to increase it for convex surfaces (nanoparticles). This behavior is traced back to the dependence of the total free energy as a function of the curvature of the surface. For intermediate salt concentrations (0.01-0.1 M), the magnitude of the effect is larger than that for low salt concentrations, although the general picture becomes more complex due to the fact that the added salt competes with the polycation to screen the negative charge of the substrate. It is argued that the effect under discussion will be relevant for nano-objects that have different radii or type of curvature at different locations (i.e. conical nanochannels or cylindrical nanorods with hemispherical tips) as our theory predicts inhomogeneous polyelectrolyte adsorption on their surfaces. © 2018 American Chemical Society.

Registro:

Documento: Artículo
Título:Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature
Autor:Gilles, F.M.; Boubeta, F.M.; Azzaroni, O.; Szleifer, I.; Tagliazucchi, M.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, La Plata, 1900, Argentina
Department of Biomedical Engineering, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, United States
INQUIMAE-CONICET, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:Adsorption; Free energy; Nanoparticles; Nanorods; Adsorption equilibria; Effective charge; Low salt concentration; Polyelectrolyte adsorption; Polyelectrolyte chain; Salt concentration; Surface curvatures; Total free energy; Polyelectrolytes
Año:2018
Volumen:122
Número:12
Página de inicio:6669
Página de fin:6677
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b12841
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v122_n12_p6669_Gilles

Referencias:

  • Decher, G., Schlenoff, B.J., (2003) Multilayer Thin Films, , Wiley-VCH: Weinheim
  • Ali, M., Yameen, B., Cervera, J., Ramírez, P., Neumann, R., Ensinger, W., Knoll, W., Azzaroni, O., Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment (2010) J. Am. Chem. Soc., 132, pp. 8338-8348
  • Gole, A., Murphy, C.J., Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization (2005) Chem. Mater., 17, pp. 1325-1330
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., Molecular Theory of Chemically Modified Electrodes by Redox Polyelectrolytes under Equilibrium Conditions: Comparison with Experiment (2008) J. Phys. Chem. C, 112, pp. 458-471
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., Redox and Acid-Base Coupling in Ultrathin Polyelectrolyte Films (2008) Langmuir, 24, pp. 2869-2877
  • Scodeller, P., Flexer, V., Szamocki, R., Calvo, E.J., Tognalli, N., Troiani, H., Fainstein, A., Wired-Enzyme Core-Shell Au Nanoparticle Biosensor (2008) J. Am. Chem. Soc., 130, pp. 12690-12697
  • Brunsen, A., Calvo, A., Williams, F.J., Soler-Illia, G.J.A.A., Azzaroni, O., Manipulation of Molecular Transport into Mesoporous Silica Thin Films by the Infiltration of Polyelectrolytes (2011) Langmuir, 27, pp. 4328-4333
  • Boroudjerdi, H., Naji, A., Naji, A., Netz, R., Global Analysis of the Ground-State Wrapping Conformation of a Charged Polymer on an Oppositely Charged Nano-Sphere (2014) Eur. Phys. J. E: Soft Matter Biol. Phys., 37, p. 21
  • Shojaei, H.R., Muthukumar, M., Adsorption and Encapsulation of Flexible Polyelectrolytes in Charged Spherical Vesicles (2017) J. Chem. Phys., 146
  • Wang, J., Muthukumar, M., Encapsulation of a Polyelectrolyte Chain by an Oppositely Charged Spherical Surface (2011) J. Chem. Phys., 135
  • Mella, M., Izzo, L., Modulation of Ionization and Structural Properties of Weak Polyelectrolytes Due to 1d, 2d, and 3d Confinement (2017) J. Polym. Sci., Part B: Polym. Phys., 55, pp. 1088-1102
  • Vázquez-Montejo, P., McDargh, Z., Deserno, M., Guven, J., Cylindrical Confinement of Semiflexible Polymers (2015) Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 91
  • De Carvalho, S.J., Metzler, R., Cherstvy, A.G., Inverted Critical Adsorption of Polyelectrolytes in Confinement (2015) Soft Matter, 11, pp. 4430-4443
  • Messina, R., Holm, C., Kremer, K., Polyelectrolyte Multilayering on a Charged Sphere (2003) Langmuir, 19, pp. 4473-4482
  • Narambuena, C.F., Beltramo, D.M., Leiva, E.P.M., Polyelectrolyte Adsorption on a Charged Surface. A Study by Monte Carlo Simulations (2007) Macromolecules, 40, pp. 7336-7342
  • Netz, R.R., Andelman, D., Neutral and Charged Polymers at Interfaces (2003) Phys. Rep., 380, pp. 1-95
  • Dobrynin, A.V., Rubinstein, M., Theory of Polyelectrolytes in Solutions and at Surfaces (2005) Prog. Polym. Sci., 30, pp. 1049-1118
  • Forsman, J., Polyelectrolyte Adsorption: Electrostatic Mechanisms and Nonmonotonic Responses to Salt Addition (2012) Langmuir, 28, pp. 5138-5150
  • Von Goeler, F., Muthukumar, M., Adsorption of Polyelectrolytes onto Curved Surfaces (1994) J. Chem. Phys., 100, pp. 7796-7803
  • Borukhov, I., Andelman, D., Orland, H., Scaling Laws of Polyelectrolyte Adsorption (1998) Macromolecules, 31, pp. 1665-1671
  • Cheng, H., De La Cruz, M.O., Rod-Like Polyelectrolyte Adsorption onto Charged Surfaces in Monovalent and Divalent Salt Solutions (2004) J. Polym. Sci., Part B: Polym. Phys., 42, pp. 3642-3653
  • Cerdà, J.J., Qiao, B., Holm, C., Understanding Polyelectrolyte Multilayers: An Open Challenge for Simulations (2009) Soft Matter, 5, pp. 4412-4425
  • Tagliazucchi, M., Szleifer, I., Stimuli-Responsive Polymers Grafted to Nanopores and Other Nano-Curved Surfaces: Structure, Chemical Equilibrium and Transport (2012) Soft Matter, 8, pp. 7292-7305
  • Nap, R., Gong, P., Szleifer, I., Weak Polyelectrolytes Tethered to Surfaces: Effect of Geometry, Acid-Base Equilibrium and Electrical Permittivity (2006) J. Polym. Sci., Part B: Polym. Phys., 44, pp. 2638-2662
  • Tagliazucchi, M., Szleifer, I., How Does Confinement Change Ligand-Receptor Binding Equilibrium? Protein Binding in Nanopores and Nanochannels (2015) J. Am. Chem. Soc., 137, pp. 12539-12551
  • Solveyra, E.G., Tagliazucchi, M., Szleifer, I., Anisotropic Surface Functionalization of Au Nanorods Driven by Molecular Architecture and Curvature Effects (2016) Faraday Discuss., 191, pp. 351-372
  • Tagliazucchi, M., Azzaroni, O., Szleifer, I., Responsive Polymers End-Tethered in Solid-State Nanochannels: When Nanoconfinement Really Matters (2010) J. Am. Chem. Soc., 132, pp. 12404-12411
  • Liufu, S.-C., Xiao, H.-N., Li, Y.-P., Adsorption of Cationic Polyelectrolyte at the Solid/Liquid Interface and Dispersion of Nanosized Silica in Water (2005) J. Colloid Interface Sci., 285, pp. 33-40
  • Xie, F., Nylander, T., Piculell, L., Utsel, S., Wågberg, L., Åkesson, T., Forsman, J., Polyelectrolyte Adsorption on Solid Surfaces: Theoretical Predictions and Experimental Measurements (2013) Langmuir, 29, pp. 12421-12431
  • Van De Steeg, H.G.M., Stuart, M.A.C., De Keizer, A., Bijsterbosch, B.H., Polyelectrolyte Adsorption: A Subtle Balance of Forces (1992) Langmuir, 8, pp. 2538-2546
  • Shafir, A., Andelman, D., Netz, R.R., Adsorption and Depletion of Polyelectrolytes from Charged Surfaces (2003) J. Chem. Phys., 119, pp. 2355-2362
  • Tagliazucchi, M., Szleifer, I., (2016) Chemically Modified Nanopores and Nanochannels, , William Andrew
  • Tagliazucchi, M., Rabin, Y., Szleifer, I., Ion Transport and Molecular Organization Are Coupled in Polyelectrolyte Modified Nanopores (2011) J. Am. Chem. Soc., 133, pp. 17753-17763
  • Peleg, O., Tagliazucchi, M., Kröger, M., Rabin, Y., Szleifer, I., Morphology Control of Hairy Nanopores (2011) ACS Nano, 5, pp. 4737-4747

Citas:

---------- APA ----------
Gilles, F.M., Boubeta, F.M., Azzaroni, O., Szleifer, I. & Tagliazucchi, M. (2018) . Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature. Journal of Physical Chemistry C, 122(12), 6669-6677.
http://dx.doi.org/10.1021/acs.jpcc.7b12841
---------- CHICAGO ----------
Gilles, F.M., Boubeta, F.M., Azzaroni, O., Szleifer, I., Tagliazucchi, M. "Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature" . Journal of Physical Chemistry C 122, no. 12 (2018) : 6669-6677.
http://dx.doi.org/10.1021/acs.jpcc.7b12841
---------- MLA ----------
Gilles, F.M., Boubeta, F.M., Azzaroni, O., Szleifer, I., Tagliazucchi, M. "Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature" . Journal of Physical Chemistry C, vol. 122, no. 12, 2018, pp. 6669-6677.
http://dx.doi.org/10.1021/acs.jpcc.7b12841
---------- VANCOUVER ----------
Gilles, F.M., Boubeta, F.M., Azzaroni, O., Szleifer, I., Tagliazucchi, M. Modulation of Polyelectrolyte Adsorption on Nanoparticles and Nanochannels by Surface Curvature. J. Phys. Chem. C. 2018;122(12):6669-6677.
http://dx.doi.org/10.1021/acs.jpcc.7b12841