Artículo

Lionello, D.F.; Steinberg, P.Y.; Zalduendo, M.M.; Soler-Illia, G.J.A.A.; Angelomé, P.C.; Fuertes, M.C. "Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania" (2017) Journal of Physical Chemistry C. 121(40):22576-22586
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mesoporous titania thin films (MTTFs) with well ordered cubic array of mesopores were synthesized on glass and silicon substrates using Brij 58 as a template. The effect of the thermal treatment and the substrate on the structural parameters (thickness, porosity, pore order, and crystallinity) and the mechanical properties of MTTFs were determined by electron microscopy, X-ray diffraction, Raman spectroscopy, 2D-small angle X-ray scattering, ellipsometric porosimetry, and nanoindentation. Clear differences in the mesostructural order evolution and crystallization behavior were observed as a function of the substrate and the thermal treatment. In particular, the anatase crystallization process occurs at lower temperatures for samples prepared on silicon when compared with samples prepared on glass, due to the balance between nanocrystals formation, mass diffusion, and Na+ migration from the substrate. As a consequence of such phenomena, the MTTFs mechanical properties are also dependent on the substrate. For samples prepared on glass the 325-350 °C range is the optimal annealing temperature to maximize the mechanical properties (E value of 45 GPa), while higher temperatures can be used for the Si supported oxides, to reach E values of 60 GPa. The obtained anatase crystal dimensions (below 4-5 nm) are restricted by the wall thickness, indicating the chosen thermal treatment prevents the mesoporous structure from collapsing even when the oxide presents thin walls and small pores, preserving high porosity and high porous ordering. As a consequence, the presented Brij 58 templated MTTFs exhibits smaller crystalline domains than analogous materials with thicker walls. Such properties could be exploited for applications in photocatalysis and titania-based solar cells. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania
Autor:Lionello, D.F.; Steinberg, P.Y.; Zalduendo, M.M.; Soler-Illia, G.J.A.A.; Angelomé, P.C.; Fuertes, M.C.
Filiación:Gerencia Química, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, San Martín, Buenos Aires, B1650KNA, Argentina
Instituto Sabato, UNSAM-CNEA, Av. Gral. Paz 1499, San Martín, Buenos Aires, B1650KNA, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2169, Ciudad Universitaria, Capital Federal, C1428GA, Argentina
Instituto de Nanosistemas, UNSAM, CONICET, 25 de mayo 1021, San Martín, Buenos Aires, 1650, Argentina
Palabras clave:Crystal structure; Crystallization; Film preparation; Glass; Heat treatment; Mechanical properties; Mesoporous materials; Porosity; Titanium dioxide; X ray diffraction; X ray scattering; Crystalline domains; Crystallization behavior; Crystallization process; Ellipsometric porosimetry; Mesoporous structures; Mesoporous titania thin film; Mesostructural ordering; Structural parameter; Substrates
Año:2017
Volumen:121
Número:40
Página de inicio:22576
Página de fin:22586
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b09054
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n40_p22576_Lionello

Referencias:

  • Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C., Grosso, D., Boissiere, C., Critical Aspects in the Production of Periodically Ordered Mesoporous Titania Thin Films (2012) Nanoscale, 4, pp. 2549-2566
  • Choi, H., Sofranko, A.C., Dionysiou, D.D., Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure: Synthesis, Characterization, and Multifunction (2006) Adv. Funct. Mater., 16, pp. 1067-1074
  • Grätzel, M., Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells (2004) J. Photochem. Photobiol., A, 164, pp. 3-14
  • Lancelle-Beltran, E., Prené, P., Boscher, C., Belleville, P., Buvat, P., Lambert, S., Guillet, F., Sanchez, C., Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films (2006) Chem. Mater., 18, pp. 6152-6156
  • Panjawi, N., Naik, A., Warwick, M.E.A., Hyett, G., Binions, R., The Preparation of Titanium Dioxide Gas Sensors by the Electric Field Assisted Aerosol Cvd Reaction of Titanium Isopropoxide in Toluene (2012) Chem. Vap. Deposition, 18, pp. 102-106
  • Faustini, M., Marmiroli, B., Malfatti, L., Louis, B., Krins, N., Falcaro, P., Grenci, G., Grosso, D., Direct Nano-in-Micropatterning of TiO2 Thin Layers and Tio2/Pt Nanoelectrode Arrays by Deep X-Ray Lithography (2011) J. Mater. Chem., 21, pp. 3597-3603
  • Martinez, E.D., Granja, L., Bellino, M.G., Soler-Illia, G.J.A.A., Electrical Conductivity in Patterned Silver-Mesoporous Titania Nanocomposite Thin Films: Towards Robust 3D Nano-Electrodes (2010) Phys. Chem. Chem. Phys., 12, pp. 14445-14448
  • Bass, J.D., Grosso, D., Boissiere, C., Belamie, E., Coradin, T., Sanchez, C., Stability of Mesoporous Oxide and Mixed Metal Oxide Materials under Biologically Relevant Conditions (2007) Chem. Mater., 19, pp. 4349-4356
  • Lilja, M., Forsgren, J., Welch, K., Åstrand, M., Engqvist, H., Strømme, M., Photocatalytic and Antimicrobial Properties of Surgical Implant Coatings of Titanium Dioxide Deposited though Cathodic Arc Evaporation (2012) Biotechnol. Lett., 34, pp. 2299-2305
  • Zhang, R., Elzatahry, A.A., Al-Deyab, S.S., Zhao, D., Mesoporous Titania: From Synthesis to Application (2012) Nano Today, 7, pp. 344-366
  • Gu, D., Schuth, F., Synthesis of Non-Siliceous Mesoporous Oxides (2014) Chem. Soc. Rev., 43, pp. 313-344
  • Li, W., Wu, Z., Wang, J., Elzatahry, A.A., Zhao, D., A Perspective on Mesoporous TiO2 Materials (2014) Chem. Mater., 26, pp. 287-298
  • Bagheri, S., Mohd Hir, Z.A., Yousefi, A.T., Abdul Hamid, S.B., Progress on Mesoporous Titanium Dioxide: Synthesis, Modification and Applications (2015) Microporous Mesoporous Mater., 218, pp. 206-222
  • Brinker, C.J., Lu, Y., Sellinger, A., Fan, H., Evaporation-Induced Self-Assembly: Nanostructures Made Easy (1999) Adv. Mater., 11, pp. 579-585
  • Yun, H.S., Miyazawa, K., Zhou, H.S., Honma, I., Kuwabara, M., Synthesis of Mesoporous Thin TiO2 Films with Hexagonal Pore Structures Using Triblock Copolymer Templates (2001) Adv. Mater., 13, pp. 1377-1380
  • Grosso, D., Soler-Illia, G.J.A.A., Babonneau, F., Sanchez, C., Albouy, P.A., Brunet-Bruneau, A., Balkenende, A.R., Highly Organized Mesoporous Titania Thin Films Showing Mono-Oriented 2D Hexagonal Channels (2001) Adv. Mater., 13, pp. 1085-1090
  • Wang, J., Li, H., Li, H., Zuo, C., Wang, H., Thermal Stability and Optimal Photoinduced Hydrophilicity of Mesoporous TiO2 Thin Films (2012) J. Phys. Chem. C, 116, pp. 9517-9525
  • Grosso, D., Soler-Illia, G.J.A.A., Crepaldi, E.L., Cagnol, F., Sinturel, C., Bourgeois, A., Brunet-Bruneau, A., Sanchez, C., Highly Porous TiO2 Anatase Optical Thin Films with Cubic Mesostructure Stabilized at 700 °c (2003) Chem. Mater., 15, pp. 4562-4570
  • Luca, V., Bertram, W.K., Sizgek, G.D., Yang, B., Cookson, D., Delineating the First Few Seconds of Supramolecular Self-Assembly of Mesostructured Titanium Oxide Thin Films through Time-Resolved Small Angle X-Ray Scattering (2008) Langmuir, 24, pp. 10737-10745
  • Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2 (2003) J. Am. Chem. Soc., 125, pp. 9770-9786
  • Gonzalez Solveyra, E., Fuertes, M.C., Soler-Illia, G.J.A.A., Angelomé, P.C., 2D-SAXS in Situ Measurements as a Tool to Study Elusive Mesoporous Phases: The Case of p6mm TiO2 (2017) J. Phys. Chem. C, 121, pp. 3623-3631
  • Choi, S.Y., Mamak, M., Speakman, S., Chopra, N., Ozin, G.A., Evolution of Nanocrystallinity in Periodic Mesoporous Anatase Thin Films (2005) Small, 1, pp. 226-232
  • Angelomé, P.C., Andrini, L., Calvo, M.E., Requejo, F.G., Bilmes, S.A., Soler-Illia, G.J.A.A., Mesoporous Anatase TiO2 Films: Use of Ti K XANES for the Quantification of the Nanocrystalline Character and Substrate Effects in the Photocatalysis Behavior (2007) J. Phys. Chem. C, 111, pp. 10886-10893
  • Bass, J.D., Grosso, D., Boissiere, C., Sanchez, C., Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry (2008) J. Am. Chem. Soc., 130, pp. 7882-7897
  • Choi, S.Y., Mamak, M., Ozin, G.A., Peiris, F.C., Exploring the Thermal Transformation of Mesoporous Titania Using Spectroscopic Ellipsometry (2008) Phys. Status Solidi A, 205, pp. 825-828
  • Violi, I.L., Perez, M.D., Fuertes, M.C., Soler-Illia, G.J.A.A., Highly Ordered, Accessible and Nanocrystalline Mesoporous TiO2 Thin Films on Transparent Conductive Substrates (2012) ACS Appl. Mater. Interfaces, 4, pp. 4320-4330
  • Sakatani, Y., Grosso, D., Nicole, L., Boissiere, C., Soler-Illia, G.J., Sanchez, C., Optimised Photocatalytic Activity of Grid-Like Mesoporous TiO2 Films: Effect of Crystallinity, Pore Size Distribution, and Pore Accessibility (2006) J. Mater. Chem., 16, pp. 77-82
  • Henrist, C., Dewalque, J., Mathis, F., Cloots, R., Control of the Porosity of Anatase Thin Films Prepared by EISA: Influence of Thickness and Heat Treatment (2009) Microporous Mesoporous Mater., 117, pp. 292-296
  • Uchida, H., Patel, M.N., May, R.A., Gupta, G., Stevenson, K.J., Johnston, K.P., Highly-Ordered Mesoporous Titania Thin Films Prepared Via Surfactant Assembly on Conductive Indium-Tin-Oxide/Glass Substrate and Its Optical Properties (2010) Thin Solid Films, 518, pp. 3169-3176
  • Carreon, M.A., Choi, S.Y., Mamak, M., Chopra, N., Ozin, G.A., Pore Architecture Affects Photocatalytic Activity of Periodic Mesoporous Nanocrystalline Anatase Thin Films (2007) J. Mater. Chem., 17, pp. 82-89
  • Wang, J., Li, H., Li, H., Zou, C., Wang, H., Li, D., Mesoporous TiO2 Thin Films Exhibiting Enhanced Thermal Stability and Controllable Pore Size: Preparation and Photocatalyzed Destruction of Cationic Dyes (2014) ACS Appl. Mater. Interfaces, 6, pp. 1623-1631
  • Anderson, A.-L., Binions, R., The Effect of Brij® Surfactants in Sol-Gel Processing for the Production of TiO2 Thin Films (2015) Polyhedron, 85, pp. 83-92
  • Innocenzi, P., Malfatti, L., Kidchob, T., Grosso, D., Controlling the Processing of Mesoporous Titania Films by in Situ Ftir Spectroscopy: Getting Crystalline Micelles into the Mesopores (2010) J. Phys. Chem. C, 114, pp. 10806-10811
  • Innocenzi, P., Malfatti, L., Kidchob, T., Enzo, S., Ventura, G.D., Schade, U., Marcelli, A., Correlative Analysis of the Crystallization of Sol-Gel Dense and Mesoporous Anatase Titania Films (2010) J. Phys. Chem. C, 114, pp. 22385-22391
  • Zhou, H., Wang, C., Feng, Z., Li, S., Xu, B., Formation of Grid-Like Mesoporous Titania Film Via Structural Transformation and Its Surface Superhydrophilicity Conversion (2012) Surf. Coat. Technol., 207, pp. 34-41
  • Smarsly, B., Grosso, D., Brezesinski, T., Pinna, N., Boissière, C., Antonietti, M., Sanchez, C., Highly Crystalline Cubic Mesoporous TiO2 with 10-nm Pore Diameter Made with a New Block Copolymer Template (2004) Chem. Mater., 16, pp. 2948-2952
  • Brezesinski, T., Wang, J., Polleux, J., Dunn, B., Tolbert, S.H., Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors (2009) J. Am. Chem. Soc., 131, pp. 1802-1809
  • Das, S., Wu, Q., Garlapalli, R.K., Nagpure, S., Strzalka, J., Jiang, Z., Rankin, S.E., In-Situ Gisaxs Investigation of Pore Orientation Effects on the Thermal Transformation Mechanism in Mesoporous Titania Thin Films (2014) J. Phys. Chem. C, 118, pp. 968-976
  • Blanc, L., Tetelin, A., Boissiere, C., Tortissier, G., Dejous, C., Rebiere, D., Love Wave Characterization of the Shear Modulus Variations of Mesoporous Sensitive Films during Vapor Sorption (2012) IEEE Sens. J., 12, pp. 1442-1449
  • Rahman, T., Liu, R., Ortel, E., Kraehnert, R., Antoniou, A., Mechanical Behavior of Mesoporous Titania Thin Films (2014) Appl. Phys. Lett., 104, p. 241902
  • Fuertes, M.C., Marchena, M., Marchi, M.C., Wolosiuk, A., Soler Illia, G.J.A.A., Controlled Deposition of Silver Nanoparticles in Mesoporous Single- or Multilayer Thin Films: From Tuned Pore Filling to Selective Spatial Location of Nanometric Objects (2009) Small, 5, pp. 272-280
  • Kirsch, B.L., Richman, E.K., Riley, A.E., Tolbert, S.H., In-Situ X-Ray Diffraction Study of the Crystallization Kinetics of Mesoporous Titania Films (2004) J. Phys. Chem. B, 108, pp. 12698-12706
  • Forouhi, A.R., Bloomer, I.I., Optical Dispersion Relations for Amorphous Semiconductors and Amorphous Dielectrics (1986) Phys. Rev. B: Condens. Matter Mater. Phys., 34, pp. 7018-7026
  • Boissière, C., Grosso, D., Lepoutre, S., Nicole, L., Bruneau, A.B., Sanchez, C., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry (2005) Langmuir, 21, pp. 12362-12371
  • Fischer-Cripps, A.C., A Review of Analysis Methods for Sub-Micron Indentation Testing (2000) Vacuum, 58, pp. 569-585
  • Fischer-Cripps, A.C., (2011) Nanoindentation, , 3 rd ed. Springer: Berlin
  • Mayo, M.J., Nix, W.D., A Micro-Indentation Study of Superplasticity in Pb, Sn, and Sn-38 Wt% Pb (1988) Acta Metall., 36, pp. 2183-2192
  • Lucas, B.N., Oliver, W.C., Indentation Power-Law Creep of High-Purity Indium (1999) Metall. Mater. Trans. A, 30, pp. 601-610
  • Kruk, M., Jaroniec, M., Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials (2001) Chem. Mater., 13, pp. 3169-3183
  • Roque-Malherbe, R., (2007) Adsorption and Diffusion in Nanoporous Materials, , CRC Press: Boca Raton, FL
  • Carboni, D., Marongiu, D., Rassu, P., Pinna, A., Amenitsch, H., Casula, M., Marcelli, A., Innocenzi, P., Enhanced Photocatalytic Activity in Low-Temperature Processed Titania Mesoporous Films (2014) J. Phys. Chem. C, 118, pp. 12000-12009
  • Ma, W., Lu, Z., Zhang, M., Investigation of Structural Transformations in Nanophase Titanium Dioxide by Raman Spectroscopy (1998) Appl. Phys. A: Mater. Sci. Process., 66, pp. 621-627
  • Xie, H., Li, N., Liu, B., Yang, J., Zhao, X., Role of Sodium Ion on TiO2 Photocatalyst: Influencing Crystallographic Properties or Serving as the Recombination Center of Charge Carriers? (2016) J. Phys. Chem. C, 120, pp. 10390-10399
  • Ohsaka, T., Izumi, F., Fujiki, Y., Raman Spectrum of Anatase, TiO2 (1978) J. Raman Spectrosc., 7, pp. 321-324
  • Balaji, S., Djaoued, Y., Robichaud, J., Phonon Confinement Studies in Nanocrystalline Anatase-Tio2 Thin Films by Micro Raman Spectroscopy (2006) J. Raman Spectrosc., 37, pp. 1416-1422
  • Doss, C.J., Zallen, R., Raman Studies of Sol-Gel Alumina: Finite-Size Effects in Nanocrystalline AlO(OH) (1993) Phys. Rev. B: Condens. Matter Mater. Phys., 48, pp. 15626-15637
  • Yaghoubi, H., Taghavinia, N., Alamdari, E.K., Volinsky, A.A., Nanomechanical Properties of TiO2 Granular Thin Films (2010) ACS Appl. Mater. Interfaces, 2, pp. 2629-2636
  • Siegel, R.W., Synthesis and Properties of Nanophase Materials (1993) Mater. Sci. Eng., A, 168, pp. 189-197
  • (1994) Nanophase Materials. Synthesis, Properties, Applications, , Springer: Berlin
  • Fan, H., Hartshorn, C., Buchheit, T., Tallant, D., Assink, R., Simpson, R., Kissel, D.J., Brinker, C.J., Modulus-Density Scaling Behaviour and Framework Architecture of Nanoporous Self-Assembled Silicas (2007) Nat. Mater., 6, pp. 418-423
  • Carter, C.B., Norton, M.G., (2013) Ceramic Materials. Science and Engineering, , 2 nd ed. Springer: Berlin
  • Karch, J., Birringer, R., Gleiter, H., Ceramics Ductile at Low Temperature (1987) Nature, 330, pp. 556-558
  • Mayo, M.J., Siegel, R.W., Liao, Y.X., Nix, W.D., Nanoindentation of Nanocrystalline ZnO (1992) J. Mater. Res., 7, pp. 973-979
  • Mayo, M.J., Siegel, R.W., Narayanasamy, A., Nix, W.D., Mechanical Properties of Nanophase TiO2 as Determined by Nanoindentation (1990) J. Mater. Res., 5, pp. 1073-1082
  • Maier, V., Durst, K., Mueller, J., Backes, B., Höppel, H.W., Göken, M., Nanoindentation Strain-Rate Jump Tests for Determining the Local Strain-Rate Sensitivity in Nanocrystalline Ni and Ultrafine-Grained Al (2011) J. Mater. Res., 26, pp. 1421-1430
  • Maier, V., Merle, B., Göken, M., Durst, K., An Improved Long-Term Nanoindentation Creep Testing Approach for Studying the Local Deformation Processes in Nanocrystalline Metals at Room and Elevated Temperatures (2013) J. Mater. Res., 28, pp. 1177-1188

Citas:

---------- APA ----------
Lionello, D.F., Steinberg, P.Y., Zalduendo, M.M., Soler-Illia, G.J.A.A., Angelomé, P.C. & Fuertes, M.C. (2017) . Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania. Journal of Physical Chemistry C, 121(40), 22576-22586.
http://dx.doi.org/10.1021/acs.jpcc.7b09054
---------- CHICAGO ----------
Lionello, D.F., Steinberg, P.Y., Zalduendo, M.M., Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C. "Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania" . Journal of Physical Chemistry C 121, no. 40 (2017) : 22576-22586.
http://dx.doi.org/10.1021/acs.jpcc.7b09054
---------- MLA ----------
Lionello, D.F., Steinberg, P.Y., Zalduendo, M.M., Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C. "Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania" . Journal of Physical Chemistry C, vol. 121, no. 40, 2017, pp. 22576-22586.
http://dx.doi.org/10.1021/acs.jpcc.7b09054
---------- VANCOUVER ----------
Lionello, D.F., Steinberg, P.Y., Zalduendo, M.M., Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C. Structural and Mechanical Evolution of Mesoporous Films with Thermal Treatment: The Case of Brij 58 Templated Titania. J. Phys. Chem. C. 2017;121(40):22576-22586.
http://dx.doi.org/10.1021/acs.jpcc.7b09054