Artículo

Staffa, J.K.; Lorenz, L.; Stolarski, M.; Murgida, D.H.; Zebger, I.; Utesch, T.; Kozuch, J.; Hildebrandt, P. "Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect" (2017) Journal of Physical Chemistry C. 121(40):22274-22285
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A comprehensive understanding of physical and chemical processes at biological membranes requires the knowledge of the interfacial electric field which is a key parameter for controlling molecular structures and reaction dynamics. An appropriate approach is based on the vibrational Stark effect (VSE) that exploits the electric-field dependent perturbation of localized vibrational modes. In this work, 6-mercaptohexanenitrile (C5CN) and 7-mercaptoheptanenitrile (C6CN) were used to form self-assembled monolayers (SAMs) on a nanostructured Au electrode as a simple mimic for biomembranes. The C - N stretching mode was probed by surface enhanced infrared absorption (SEIRA) spectroscopy to determine the frequency and intensity as a function of the electrode potential. The intensity variations were related to potential-dependent changes of the nitrile orientation with respect to the electric field. Supported by electrochemical impedance spectroscopy, molecular dynamics simulations, and quantum chemical calculations the frequency changes were translated into profiles of the interfacial electric field, affording field strengths up to 4 × 108 V/m (C6CN) and 1.3 × 109 V/m (C5CN) between +0.4 and 0.4 V (vs Ag/AgCl). These profiles compare very well with the predictions of a simple electrostatic model developed in this work. This model is shown to be applicable to different types of electrode/SAM systems and allows for a quick estimate of interfacial electric fields. Finally, the implications for electric-field dependent processes at biomembranes are discussed. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect
Autor:Staffa, J.K.; Lorenz, L.; Stolarski, M.; Murgida, D.H.; Zebger, I.; Utesch, T.; Kozuch, J.; Hildebrandt, P.
Filiación:Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17. Juni 135, Berlin, D-10623, Germany
Universidad de Buenos Aires, Instituto de Química Física de Los Materiales Medio Ambiente y Energía, Ciudad Universitaria, Buenos Aires, 1053, Argentina
Palabras clave:Biological membranes; Electrochemical impedance spectroscopy; Electrodes; Light absorption; Molecular dynamics; Quantum chemistry; Reaction kinetics; Self assembled monolayers; Stark effect; Electrode potentials; Electrostatic modeling; Intensity variations; Local electric field; Molecular dynamics simulations; Potential-dependent; Quantum chemical calculations; Surface enhanced infrared absorption spectroscopy; Electric fields
Año:2017
Volumen:121
Número:40
Página de inicio:22274
Página de fin:22285
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b08434
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n40_p22274_Staffa

Referencias:

  • Sasaki, M., Takagi, M., Okamura, Y., A Voltage Sensor-Domain Protein Is a Voltage-Gated Proton Channel (2006) Science, 312, pp. 589-592
  • Catterall, W.A., Structure and Regulation of Voltage-gated Ca2+ Channels (2000) Annu. Rev. Cell Dev. Biol., 16, pp. 521-555
  • Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., Wagner, G., Solution Structure of the Integral Human Membrane Protein VDAC-1 in Detergent Micelles (2008) Science, 321, pp. 1206-1210
  • Clarke, R.J., The Dipole Potential of Phospholipid Membranes and Methods for its Detection (2001) Adv. Colloid Interface Sci., 8990, pp. 263-281
  • Khoa Ly, H., Wisitruangsakul, N., Sezer, M., Feng, J.J., Kranich, A., Weidinger, I., Zebger, I., Hildebrandt, P., Electric-Field Effects on the Interfacial Electron Transfer and Protein Dynamics of Cytochrome c (2011) J. Electroanal. Chem., 660, pp. 367-376
  • Khoa Ly, H., Sezer, M., Wisitruangsakul, N., Feng, J.J., Kranich, A., Millo, D., Weidinger, I.M., Hildebrandt, P., Surface Enhanced Vibrational Spectroscopies for Probing Transient Interactions of Proteins with Biomimetic Interfaces: Electric Field Effects on Electron Transfer and Protein Dynamics (2011) FEBS J., 278, pp. 1382-1390
  • Murgida, D.H., Hildebrandt, P., Disentangling Interfacial Redox Processes of Proteins by SERR Spectroscopy (2008) Chem. Soc. Rev., 37, pp. 937-945
  • Alvarez-Paggi, D., Meister, W., Kuhlmann, U., Weidinger, I., Tenger, K., Zimányi, L., Rákhely, G., Murgida, D.H., Disentangling Electron Tunneling and Protein Dynamics of Cytochrome c trough a Rationally Designed Surface Mutation (2013) J. Phys. Chem. B, 117, pp. 6061-6068
  • Khan, M.S., Dosoky, N.S., Williams, J.D., Engineering Lipid Bilayer Membranes for Protein Studies (2013) Int. J. Mol. Sci., 14, pp. 21561-21597
  • Tien, H.T., Black Lipid Membranes: Thickness Determination and Molecular Organization by Optical Methods (1967) J. Theor. Biol., 16, pp. 97-110
  • Stelzle, M., Weissmüller, G., Sackmann, E., On the Application of Supported Bilayers as Receptive Layers for Biosensors with Electrical Detection (1993) J. Phys. Chem., 97, pp. 2974-2981
  • Jeuken, L.J.C., Connell, S.D., Nurnabi, M., O'Reilly, J., Henderson, P.J.F., Evans, S.D., Bushby, R.J., Direct Electrochemical Interaction between a Modified Gold Electrode and a Bacterial Membrane Extract (2005) Langmuir, 21, pp. 1481-1488
  • Harroun, H.T., Heller, W.T., Weiss, T.M., Yang, L., Huang, H.W., Experimental Evidence for Hydrophobic Matching and Membrane-Mediated Interactions in Lipid Bilayers Containing Gramicidin (1999) Biophys. J., 76, pp. 937-945
  • Laredo, T., Dutcher, J.R., Lipkowski, J., Electric Field Driven Changes of a Gramicidin Containing Lipid Bilayer Supported on a Au(111) Surface (2011) Langmuir, 27, pp. 10072-10087
  • Kozuch, J., Steinem, C., Hildebrandt, P., Millo, D., Combined Electrochemistry and Surface-enhanced Infrared Absorption Spectroscopy of Gramicidin A Incorporated into Tethered Bilayer Lipid Membranes (2012) Angew. Chem., Int. Ed., 51, pp. 8114-8117
  • Kozuch, J., Weichbrodt, C., Millo, D., Giller, K., Becker, S., Hildebrandt, P., Steinem, C., Voltage-Dependent Structural Changes of the Membrane-Bound Anion Channel hVDAC1 Probed by SEIRA and Electrochemical Impedance Spectroscopy (2014) Phys. Chem. Chem. Phys., 16, pp. 9546-9555
  • Wiebalck, S., Kozuch, J., Forbrig, E., Tzschucke, C.C., Jeuken, L.J.C., Hildebrandt, P., A Novel Tethered Bilayer Lipid Membrane Tailored for the IR Spectroscopic Investigation of Membrane Proteins: Monitoring Catalysis of Cytochrome cbo3 (2016) J. Phys. Chem. B, 120, pp. 2249-2256
  • Jiang, X., Engelhard, M., Ataka, K., Heberle, J., Molecular Impact of the Membrane Potential on the Regulatory Mechanism of Proton Transfer in Sensory Rhodopsin II (2010) J. Am. Chem. Soc., 132, pp. 10808-10815
  • Ataka, K., Kottke, T., Heberle, J., Thinner, Smaller, Faster: IR Techniques to Probe the Functionality of Biological and Biomimetic Systems (2010) Angew. Chem., Int. Ed., 49, pp. 5416-5424
  • Fried, S.D., Boxer, S.G., Measuring Electric Fields and Noncovalent Interactions Using the Vibrational Stark Effect (2015) Acc. Chem. Res., 48, pp. 998-1006
  • Suydam, I.T., Snow, C.D., Pande, V.S., Boxer, S.G., Electric Fields at the Active Site of an Enzyme: Direct Comparison of Experiment with Theory (2006) Science, 313, pp. 200-204
  • Bagchi, S., Fried, S.D., Boxer, S.G., A Solvatochromic Model Calibrates Nitriles' Vibrational frequencies to Electrostatic Fields (2012) J. Am. Chem. Soc., 134, pp. 10373-10376
  • Webb, L.J., Boxer, S.G., Electrostatic Fields near the Active Site of Human Aldose Reductase: 1. New Inhibitors and Vibrational Stark Effect Measurements (2008) Biochemistry, 47, pp. 1588-1598
  • Fafarman, A.T., Boxer, S.G., Nitrile Bonds as Infrared Probes of Electrostatics in Ribonuclease S (2010) J. Phys. Chem. B, 114, pp. 13536-13544
  • Fafarman, A.T., Sigala, P.A., Schwans, J.P., Fenn, T.D., Herschlag, D., Boxer, S.G., Quantitative, Directional Measurement of Electric Field Heterogeneity in the Active Site of Ketosteroid Isomerase (2012) Proc. Natl. Acad. Sci. U. S. A., 109, pp. 299-308
  • Fafarman, A.T., Sigala, P.A., Herschlag, D., Boxer, S.G., Decomposition of Vibrational Shifts of Nitriles into Electrostatic and Hydrogen-Bonding Effects (2010) J. Am. Chem. Soc., 132, pp. 12811-12813
  • Lindquist, B.A., Furse, K.E., Corcelli, S.A., Nitrile Groups as Vibrational Probes of Biomolecular Structure and Dynamics: An Overview (2009) Phys. Chem. Chem. Phys., 11, pp. 8119-8132
  • Fried, S.D., Bagchi, S., Boxer, S.G., Extreme Electric Fields Power Catalysis in the Active Site of Ketosteroid Isomerase (2014) Science, 346, pp. 1510-1514
  • Dalosto, S.D., Vanderkooi, J.M., Sharp, K.A., Vibrational Stark Effects on Carbonyl, Nitrile, and Nitrosyl Compounds Including Heme Ligands, CO, CN, and NO, Studied with Density Functional Theory (2004) J. Phys. Chem. B, 108, pp. 6450-6457
  • Getahun, Z., Huang, C.-Y., Wang, T., De León, B., DeGrado, W.F., Gai, F., Using Nitrile-Derivatized Amino Acids as Infrared Probes of Local Environment (2003) J. Am. Chem. Soc., 125, pp. 405-411
  • Gai, X.S., Coutifaris, B.A., Brewer, S.H., Fenlon, E.E., A Direct Comparison of Azide and Nitrile Vibrational Probes (2011) Phys. Chem. Chem. Phys., 13, pp. 5926-5930
  • Hu, W., Webb, L.J., Direct Measurement of the Membrane Dipole Field in Bicelles Using Vibrational Stark Effect Spectroscopy (2011) J. Phys. Chem. Lett., 2, pp. 1925-1930
  • Oklejas, V., Sjostrom, C., Harris, J.M., SERS Detection of the Vibrational Stark Effect from Nitrile-Terminated SAMs to Probe Electric Fields in the Diffuse Double-Layer (2002) J. Am. Chem. Soc., 124, pp. 2408-2409
  • Oklejas, V., Sjostrom, C., Harris, J.M., Surface-Enhanced Raman Scattering Based Vibrational Stark Effect as a Spatial Probe of Interfacial Electric Fields in the Diffuse Double Layer (2003) J. Phys. Chem. B, 107, pp. 7788-7794
  • Oklejas, V., Harris, J.M., In-Situ Investigation of Binary-Component Self-Assembled Monolayers: A SERS-Based Spectroelectrochemical Study of the Effects of Monolayer Composition on Interfacial Structure (2003) Langmuir, 19, pp. 5794-5801
  • Kwasnieski, D.T., Wang, H., Schultz, Z.D., Alkyl-nitrile Adlayers as Probes of Plasmonically Induced Electric Fields (2015) Chem. Sci., 6, pp. 4484-4494
  • Schkolnik, G., Utesch, T., Salewski, J., Tenger, K., Millo, D., Kranich, A., Zebger, I., Rákhely, G., Mapping Local Electric Fields in Proteins at Biomimetic Interfaces (2012) Chem. Commun., 48, pp. 70-72
  • Völler, J., Biava, H., Koksch, B., Hildebrandt, P., Budisa, N., Orthogonal Translation Meets Electron Transfer: In Vivo Labeling of Cytochrome C for Probing Local Electric Fields (2015) ChemBioChem, 16, pp. 742-745
  • Miyake, H., Ye, S., Osawa, M., Electroless Deposition of Gold Thin Films on Silicon for Surface-Enhanced Infrared Spectroelectrochemistry (2002) Electrochem. Commun., 4, pp. 973-977
  • Widrig, C.A., Alves, C.A., Porter, M.D., Scanning Tunneling Microscopy of Ethanethiolate and n-Octadecanethiolate Monolayers Spontaneously Absorbed at Gold Surfaces (1991) J. Am. Chem. Soc., 113, pp. 2805-2810
  • Bizzarri, A.R., Costantini, G., Cannistraro, S., MD Simulation of a Plastocyanin Mutant Adsorbed onto a Gold Surface (2003) Biophys. Chem., 106, pp. 111-123
  • Feller, S.E., Gawrisch, K., MacKerell, A.D., Polyunsaturated Fatty Acids in Lipid Bilayers: Intrinsic and Environmental Contributions to Their Unique Physical Properties (2002) J. Am. Chem. Soc., 124, pp. 318-326
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Vorobyov, I., CHARMM general force field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-atom Additive Biological Force Fields (2010) J. Comput. Chem., 31, pp. 671-690
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of Simple Potential Functions for Simulating Liquid Water (1983) J. Chem. Phys., 79, pp. 926-935
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable Molecular Dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802
  • Feller, S.E., Gawrisch, K., MacKerell, A.D., Polyunsaturated Fatty Acids in Lipid Bilayers: Intrinsic and Environmental Contributions to Their Unique Physical Properties (2002) J. Am. Chem. Soc., 124, pp. 318-326
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems (1993) J. Chem. Phys., 98, pp. 10089-10092
  • Van Gunsteren, W.F., Berendsen, H.J.C., Algorithms for Macromolecular Dynamics and Constraint Dynamics (1977) Mol. Phys., 34, pp. 1311-1327
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Jeuken, L.J.C., Daskalakis, N.N., Han, X., Sheikh, K., Erbe, A., Bushby, R.J., Evans, S.D., Phase Separation in Mixed Self-assembled Monolayers and its Effect on Biomimetic Membranes (2007) Sens. Actuators, B, 124, pp. 501-509
  • Tlili, A., Abdelghani, A., Hleli, S., Maaref, M.A., Electrical Characterization of a Thiol SAM on Gold as a First Step for the Fabrication of Immunosensors Based on a Quartz Crystal Microbalance (2004) Sensors, 4, pp. 105-114
  • Agonafer, D.D., Chainani, E., Oruc, M.E., Lee, K.S., Shannon, M.A., Study of Insulating Properties of Alkanethiol Self-Assembled Monolayers Formed under Prolonged Incubation Using Electrochemical Impedance Spectroscopy (2012) J. Nanotechnol. Eng. Med., 3, p. 031006
  • Aschaffenburg, D.J., Moog, R.S., Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile (2009) J. Phys. Chem. B, 113, pp. 12736-12743
  • Schkolnik, G., Salewski, J., Millo, D., Zebger, I., Franzen, S., Hildebrandt, P., Vibrational Stark Effect of the Electric-field Reporter 4-Mercaptobenzonitrile as a Tool for Investigating Electrostatics at Electrode/SAM/Solution Interfaces (2012) Int. J. Mol. Sci., 13, pp. 7466-7482
  • Zhang, W., Markiewicz, B.N., Doerksen, R.S., Smith, A.B., III, Gai, F., C - N Stretching Vibration of 5-Cyanotryptophan as an Infrared Probe of Protein Local Environment: What Determines its Frequency? (2016) Phys. Chem. Chem. Phys., 18, pp. 7027-7034
  • Becka, A.M., Miller, C.J., Electrochemistry at Hydroxy Thiol Coated Electrodes. 4. Comparison of the Double Layer at Hydroxy Thiol and Alkanethiol Monolayer Coated Au Electrodes (1993) J. Phys. Chem., 97, pp. 6233-6239
  • Trasatti, S., Work Function, Electronegativity, and Electrochemical Behaviour of Metals (1971) J. Electroanal. Chem. Interfacial Electrochem., 33, pp. 351-378
  • Ramírez, P., Andreu, R., Cuesta, A., Calzado, C.J., Calvente, J.J., Determination of the Potential of Zero Charge of Au(111) Modified with Thiol Monolayers (2007) Anal. Chem., 79, pp. 6473-6479
  • Wang, L., Rangger, G.M., Romaner, L., Heimel, G., Bučko, T., Ma, Z., Li, Q., Zojer, E., Electronic Structure of Self-assembled Monolayers on Au(111) Surfaces: The Impact of Backbone Polarizability (2009) Adv. Funct. Mater., 19, pp. 3766-3775
  • Heimel, G., Romaner, L., Zojer, E., Bredas, J.L., The Interface Energetics of Self-Assembled Monolayers on Metals (2008) Acc. Chem. Res., 41, pp. 721-729
  • Osawa, M., Ataka, K., Yoshii, K., Nishikawa, Y., Surface-Enhanced Infrared Spectroscopy: The Origin of the Absorption Enhancement and Band Selection Rule in the Infrared Spectra of Molecules Adsorbed on Fine Metal Particles (1993) Appl. Spectrosc., 47, pp. 1497-1502
  • Sondag-Huethorst, J.A.M., Fokkink, L.G.J., Electrochemical Characterization of Functionalized Alkanethiol Monolayers on Gold (1995) Langmuir, 11, pp. 2237-2241
  • Jeuken, L.J.C., AFM Study on the Electric-Field Effects on Supported Bilayer Lipid Membranes (2008) Biophys. J., 94, pp. 4711-4717
  • Andrews, S.S., Boxer, S.G., Vibrational Stark Effects of Nitriles I. Methods and Experimental Results (2000) J. Phys. Chem. A, 104, pp. 11853-11863
  • Schneider, S.H., Boxer, S.G., Vibrational Stark Effects of Carbonyl Probes Applied to Reinterpret IR and Raman Data for Enzyme Inhibitors in Terms of Electric Fields at the Active Site (2016) J. Phys. Chem. B, 120, pp. 9672-9684
  • Boxer, S.G., Stark Realities (2009) J. Phys. Chem. B, 113, pp. 2972-2983
  • Ringer, A.L., MacKerell, Jr.A.D., Calculation of the Vibrational Stark Effect Using a First-Principles Quantum Mechanical/Molecular Mechanical Approach (2011) J. Phys. Chem. Lett., 2, pp. 553-556
  • Smith, C.P., White, H.S., Theory of the Interfacial Potential Distribution and Reversible Voltammetric Response of Electrodes Coated with Electroactive Molecular Films (1992) Anal. Chem., 64, pp. 2398-2405
  • Murgida, D.H., Hildebrandt, P., The Heterogeneous Electron Transfer of Cytochrome c Adsorbed on Coated Silver Electrodes. Electric Field Effects on Structure and Redox Potential (2001) J. Phys. Chem. B, 105, pp. 1578-1586
  • Valette, G., Hydrophilicity of Metal Surfaces, Silver, Gold and Copper Electrodes (1982) J. Electroanal. Chem. Interfacial Electrochem., 139, pp. 285-301
  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology (2005) Chem. Rev., 105, pp. 1103-1170
  • Marr, J.M., Schultz, Z.D., Imaging Electric Fields in SERS and TERS Using the Vibrational Stark Effect (2013) J. Phys. Chem. Lett., 4, pp. 3268-3272
  • Murgida, D.H., Hildebrandt, P., Redox and Redox-coupled Processes of Heme Proteins and Enzymes at Electrochemical Interfaces (2005) Phys. Chem. Chem. Phys., 7, pp. 3773-3784
  • Nölla, T., Nöll, G., Strategies for "wiring" Redox-active Proteins to Electrodes and Applications in Biosensors, Biofuel Cells, and Nanotechnology (2011) Chem. Soc. Rev., 40, pp. 3564-3576
  • Feng, J.J., Murgida, D.H., Kuhlmann, U., Utesch, T., Mroginski, M.A., Hildebrandt, P., Weidinger, I., Gated Electron Transfer of Yeast Iso-1 Cytochrome c on SAM-coated Electrodes (2008) J. Phys. Chem. B, 112, pp. 15202-15211

Citas:

---------- APA ----------
Staffa, J.K., Lorenz, L., Stolarski, M., Murgida, D.H., Zebger, I., Utesch, T., Kozuch, J.,..., Hildebrandt, P. (2017) . Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect. Journal of Physical Chemistry C, 121(40), 22274-22285.
http://dx.doi.org/10.1021/acs.jpcc.7b08434
---------- CHICAGO ----------
Staffa, J.K., Lorenz, L., Stolarski, M., Murgida, D.H., Zebger, I., Utesch, T., et al. "Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect" . Journal of Physical Chemistry C 121, no. 40 (2017) : 22274-22285.
http://dx.doi.org/10.1021/acs.jpcc.7b08434
---------- MLA ----------
Staffa, J.K., Lorenz, L., Stolarski, M., Murgida, D.H., Zebger, I., Utesch, T., et al. "Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect" . Journal of Physical Chemistry C, vol. 121, no. 40, 2017, pp. 22274-22285.
http://dx.doi.org/10.1021/acs.jpcc.7b08434
---------- VANCOUVER ----------
Staffa, J.K., Lorenz, L., Stolarski, M., Murgida, D.H., Zebger, I., Utesch, T., et al. Determination of the Local Electric Field at Au/SAM Interfaces Using the Vibrational Stark Effect. J. Phys. Chem. C. 2017;121(40):22274-22285.
http://dx.doi.org/10.1021/acs.jpcc.7b08434