Artículo

Morozov, Y.V.; Draguta, S.; Zhang, S.; Cadranel, A.; Wang, Y.; Janko, B.; Kuno, M. "Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion" (2017) Journal of Physical Chemistry C. 121(30):16607-16616
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Laser cooling in semiconductors has recently been demonstrated in cadmium sulfide nanobelts (NBs) as well as in organic-inorganic lead halide perovskites. Cooling by as much as 40 K has been shown in CdS nanobelts and by as much as 58 K in hybrid perovskite films. This suggests that further progress in semiconductor-based optical refrigeration can ultimately lead to solid state cryocoolers capable of achieving sub 10 K temperatures. In CdS, highly efficient photoluminescence (PL) up-conversion has been attributed to efficient exciton-longitudinal optical (LO) phonon coupling. However, the nature of its efficient anti-Stokes emission has not been established. Consequently, developing a detailed understanding about the mechanism leading to efficient PL up-conversion in CdS NBs is essential to furthering the nascent field of semiconductor laser cooling. In this study, we describe a detailed investigation of anti-Stokes photoluminescence (ASPL) in CdS nanobelts. Temperature- and frequency-dependent band edge emission and ASPL spectroscopies conducted on individual belts as well as ensembles suggest that CdS ASPL is defect-mediated via the involvement of donor-acceptor states. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion
Autor:Morozov, Y.V.; Draguta, S.; Zhang, S.; Cadranel, A.; Wang, Y.; Janko, B.; Kuno, M.
Filiación:Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, United States
Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556, United States
Departamento de Química Analítica, Inorgánica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina
Palabras clave:Cadmium sulfide; Cooling; Defects; Laser cooling; Nanobelts; Organic lasers; Perovskite; Photoluminescence; Semiconductor lasers; Semiconductor quantum wells; Anti-Stokes emission; Anti-Stokes photoluminescence; Band-edge emissions; Frequency dependent; Halide perovskites; Longitudinal optical phonons; Optical refrigeration; Organic-inorganic; II-VI semiconductors
Año:2017
Volumen:121
Número:30
Página de inicio:16607
Página de fin:16616
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b05095
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n30_p16607_Morozov

Referencias:

  • Davis, K.B., Mewes, M.O., Andrews, M.R., Van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W., Bose-Einstein Condensation in a Gas of Sodium Atoms (1995) Phys. Rev. Lett., 75, pp. 3969-3973
  • Bardeen, J., Cooper, L.N., Schrieffer, J.R., Theory of Superconductivity (1957) Phys. Rev., 108, pp. 1175-1204
  • Kobayashi, M., Tsubota, M., Bose-Einstein Condensation and Superfluidity of a Dilute Bose Gas in a Random Potential (2002) Phys. Rev. B: Condens. Matter Mater. Phys., 66, p. 174516
  • Das Sarma, S., Two-Dimensional Level Broadening in the Extreme Quantum Limit (1981) Phys. Rev. B: Condens. Matter Mater. Phys., 23, pp. 4592-4596
  • Rogalski, A., Infrared Detectors: Status and Trends (2003) Prog. Quantum Electron., 27, pp. 59-210
  • Goldsmid, H.J., (2016) Introduction to Thermoelectricity, 121. , Springer Series in Materials Science; Springer Berlin Heidelberg: Berlin, Heidelberg
  • Pringsheim, P., Zwei Bemerkungen über Den Unterschied von Lumineszenz- und Temperaturstrahlung (1929) Eur. Phys. J. A, 57, pp. 739-746
  • Sheik-Bahae, M., Epstein, R.I., Optical Refrigeration (2007) Nat. Photonics, 1, pp. 693-699
  • Seletskiy, D.V., Melgaard, S.D., Bigotta, S., Di Lieto, A., Tonelli, M., Sheik-Bahae, M., Laser Cooling of Solids to Cryogenic Temperatures (2010) Nat. Photonics, 4, pp. 161-164
  • Sheik-Bahae, M., Epstein, R.I., Laser Cooling of Solids (2009) Laser Photonics Rev., 3, pp. 67-84
  • Melgaard, S.D., Albrecht, A.R., Hehlen, M.P., Sheik-Bahae, M., Solid-State Optical Refrigeration to Sub-100 K Regime (2016) Sci. Rep., 6, p. 20380
  • Sheik-Bahae, M., Epstein, R.I., Can Laser Light Cool Semiconductors? (2004) Phys. Rev. Lett., 92, pp. 247403-247411
  • Schnitzer, I., Yablonovitch, E., Caneau, C., Gmitter, T.J., Ultrahigh Spontaneous Emission Quantum Efficiency, 99.7% Internally and 72% Externally, from AlGaAs/GaAs/AlGaAs Double Heterostructures (1993) Appl. Phys. Lett., 62, pp. 131-133
  • Bender, D.A., Cederberg, J.G., Wang, C., Sheik-Bahae, M., Development of High Quantum Efficiency GaAs/GaInP Double Heterostructures for Laser Cooling (2013) Appl. Phys. Lett., 102, pp. 252102-252111
  • Sun, G., Chen, R., Ding, Y.J., Khurgin, J.B., Upconversion Due to Optical-Phonon-Assisted Anti-Stokes Photoluminescence in Bulk GaN (2015) ACS Photonics, 2, pp. 628-632
  • Rakovich, Y.P., Donegan, J.F., Vasilevskiy, M.I., Rogach, A.L., Anti-Stokes Cooling in Semiconductor Nanocrystal Quantum Dots: A Feasibility Study (2009) Phys. Status Solidi A, 206, pp. 2497-2509
  • Zhang, J., Li, D., Chen, R., Xiong, Q., Laser Cooling of a Semiconductor by 40 K (2013) Nature, 493, pp. 504-508
  • Razik, N.A., Use of a Standard Reference Material for Precise Lattice Parameter Determination of Materials of Hexagonal Crystal Structure (1987) J. Mater. Sci. Lett., 6, pp. 1443-1444
  • Wang, S., (1989) Fundamentals of Semiconductor Theory and Device Physics, , Prentice-Hall: New York
  • Li, X., Van Embden, J., Chon, J.W.M., Gu, M., Enhanced Two-Photon Absorption of CdS Nanocrystal Rods (2009) Appl. Phys. Lett., 94, p. 103117
  • Hylton, N.P., Hinrichsen, T.F., Vaquero-Stainer, A.R., Yoshida, M., Pusch, A., Hopkinson, M., Hess, O., Ekins-Daukes, N.J., Photoluminescence Upconversion at GaAs/InGaP2 Interfaces Driven by a Sequential Two-Photon Absorption Mechanism (2016) Phys. Rev. B: Condens. Matter Mater. Phys., 93, p. 235303
  • Pawlicki, M., Collins, H.A., Denning, R.G., Anderson, H.L., Two-Photon Absorption and the Design of Two-Photon Dyes (2009) Angew. Chem., Int. Ed., 48, pp. 3244-3266
  • Bjorkholm, J.E., Liao, P.F., Resonant Enhancement of Two-Photon Absorption in Sodium Vapor (1974) Phys. Rev. Lett., 33, pp. 128-131
  • Scheps, R., Upconversion Laser Processes (1996) Prog. Quantum Electron., 20, pp. 271-358
  • Arguello, C.A., Rousseau, D.L., Porto, S.P.S., First-Order Raman Effect in Wurtzite-Type Crystals (1969) Phys. Rev., 181, pp. 1351-1363
  • Zhang, F., (2014) Photon Upconversion Nanomaterials, , Springer: Berlin
  • Colbow, K., Free-to-Bound and Bound-to-Bound Transitions in CdS (1966) Phys. Rev., 141, pp. 742-749
  • Henry, C.H., Nassau, N., Lifetimes of Bound Excitons in CdS (1970) Phys. Rev. B, 1, p. 1628
  • Xu, X., Zhao, Y., Sie, E.J., Lu, Y., Liu, B., Ekahana, S.A., Ju, X., Sun, H., Dynamics of Bound Exciton Complexes in CdS Nanobelts (2011) ACS Nano, 5, pp. 3660-3669
  • Liu, B., Chen, R., Xu, X.L., Li, D.H., Zhao, Y.Y., Shen, Z.X., Xiong, Q.H., Sun, H.D., Exciton-Related Photoluminescence and Lasing in CdS Nanobelts (2011) J. Phys. Chem. C, 115, pp. 12826-12830
  • Wang, C., Li, C.Y., Hasselbeck, M.P., Imangholi, B., Sheik-Bahae, M., Precision, All-Optical Measurement of External Quantum Efficiency in Semiconductors (2011) J. Appl. Phys., 109, p. 093108
  • Draguta, S., Thakur, S., Morozov, Y.V., Wang, Y., Manser, J.S., Kamat, P.V., Kuno, M., Spatially Non-Uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films (2016) J. Phys. Chem. Lett., 7, pp. 715-721
  • Pelant, I., Valenta, J., (2012) Luminescence Spectroscopy of Semiconductors, , Oxford University Press: Oxford
  • Madelung, O., Rössler, U., Schulz, M., (1999) Landolt-Börnstein - Group III Condensed Matter, 41. , Eds. Springer-Verlag: Berlin/Heidelberg
  • Stranks, S.D., Burlakov, V.M., Leijtens, T., Ball, J.M., Goriely, A., Snaith, H.J., Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States (2014) Phys. Rev. Appl., 2, p. 034007
  • Bozyigit, D., Lin, W.M.M., Yazdani, N., Yarema, O., Wood, V.A., Quantitative Model for Charge Carrier Transport, Trapping and Recombination in Nanocrystal-Based Solar Cells (2015) Nat. Commun., 6, p. 6180
  • Vietmeyer, F., Frantsuzov, P.A., Janko, B., Kuno, M., Carrier Recombination Dynamics in Individual CdSe Nanowires (2011) Phys. Rev. B: Condens. Matter Mater. Phys., 83, p. 115319
  • Rothenberger, G., Moser, J., Graetzel, M., Serpone, N., Sharma, D.K., Charge Carrier Trapping and Recombination Dynamics in Small Semiconductor Particles (1985) J. Am. Chem. Soc., 107, pp. 8054-8059
  • Landsberg, P.T., Adams, M.J., Radiative and Auger Processes in Semiconductors (1973) J. Lumin., 7, pp. 3-34
  • Khurgin, J.B., Band Gap Engineering for Laser Cooling of Semiconductors (2006) J. Appl. Phys., 100, pp. 113116-113121
  • Thomas, D.G., Hopfield, J.J., Augustyniak, W.M., Kinetics of Radiative Recombination at Randomly Distributed Donors and Acceptors (1965) Phys. Rev., 140, pp. A202-A220
  • Fricke, C., Heitz, R., Hoffmann, A., Broser, I., Recombination Mechanisms in Highly Doped CdS:In (1994) Phys. Rev. B: Condens. Matter Mater. Phys., 49, pp. 5313-5322
  • Friske, C., Heitz, R., Lummer, B., Kutzer, V., Hoffmann, A., Broser, I., Taudt, W., Heuken, M., Time-Resolved Donor-Acceptor Pair Recombination Luminescence in Highly N- and P-Doped II-VI Semiconductors (1994) J. Cryst. Growth, 138, pp. 815-819
  • Gershenzon, M., Trumbore, F.A., Mikulyak, R.M., Kowalchik, M., Pair Spectra Involving Donor and/or Acceptor Germanium in GaP (1966) J. Appl. Phys., 37, pp. 486-498
  • Finkeissen, E., Potemski, M., Wyder, P., Vina, L., Weimann, G., Cooling of a Semiconductor by Luminescence up-Conversion (1999) Appl. Phys. Lett., 75, pp. 1258-1260

Citas:

---------- APA ----------
Morozov, Y.V., Draguta, S., Zhang, S., Cadranel, A., Wang, Y., Janko, B. & Kuno, M. (2017) . Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion. Journal of Physical Chemistry C, 121(30), 16607-16616.
http://dx.doi.org/10.1021/acs.jpcc.7b05095
---------- CHICAGO ----------
Morozov, Y.V., Draguta, S., Zhang, S., Cadranel, A., Wang, Y., Janko, B., et al. "Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion" . Journal of Physical Chemistry C 121, no. 30 (2017) : 16607-16616.
http://dx.doi.org/10.1021/acs.jpcc.7b05095
---------- MLA ----------
Morozov, Y.V., Draguta, S., Zhang, S., Cadranel, A., Wang, Y., Janko, B., et al. "Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion" . Journal of Physical Chemistry C, vol. 121, no. 30, 2017, pp. 16607-16616.
http://dx.doi.org/10.1021/acs.jpcc.7b05095
---------- VANCOUVER ----------
Morozov, Y.V., Draguta, S., Zhang, S., Cadranel, A., Wang, Y., Janko, B., et al. Defect-Mediated CdS Nanobelt Photoluminescence Up-Conversion. J. Phys. Chem. C. 2017;121(30):16607-16616.
http://dx.doi.org/10.1021/acs.jpcc.7b05095