Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present results from molecular dynamics simulations that examine microscopic characteristics of mixtures combining acetonitrile (ACN) and dimethyl sulfoxide (DMSO) at the vicinity of liquid/air and liquid/graphene interfaces. In the former interfaces, our simulations reveal a clear propensity of ACN to lie adjacent to the vapor phase at all concentrations. A simple model based on the consideration of a chemical equilibrium between bulk and surface states was found to be adequate to reproduce simulation results. Orientational correlations at the interface showed a mild tendency for dipolar aligments pointing toward the vapor phase in ACN-rich solutions; contrasting, in DMSO-rich mixtures, the preferential orientations looked mostly parallel to the interface. Close to graphene plates, the local scenarios reverse and local concentrations of DMSO are larger than the one observed in the bulk. Dynamical results reveal that the characteristic time scales describing orientational relaxations and residence times at the interfaces stretch as the concentration of ACN diminishes. For liquid/air interfaces residence times for ACN were found to be larger than those for DMSO. A classical treatment for the predictions of the C-H stretching band of the IR peaks in the bulk and at the interfaces reveals shifts that agree with experimental measurements. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile
Autor:Rodriguez, J.; Elola, M.D.; Martí, J.; Laria, D.
Filiación:Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, San Martín, Pcia. de Buenos Aires, 1650, Argentina
Department of Physics, Technical University of Catalonia, Barcelona Tech. B5-209 UPC Northern Campus, Jordi Girona 1-3, Barcelona, Catalonia, 08034, Spain
Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Ciudad Universitaria, Pabellón II, Buenos Aires, 1428, Argentina
Palabras clave:Dimethyl sulfoxide; Mixtures; Molecular dynamics; Organic solvents; Chemical equilibriums; Dimethyl sulfoxide (DMSO); Liquid/air interface; Microscopic characteristics; Molecular dynamics simulations; Orientational correlations; Orientational relaxation; Preferential orientation; Phase interfaces
Año:2017
Volumen:121
Número:27
Página de inicio:14618
Página de fin:14627
DOI: http://dx.doi.org/10.1021/acs.jpcc.7b03154
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n27_p14618_Rodriguez

Referencias:

  • McGann, L.E., Walterson, M.L., Cryoprotection by Dimethyl Sulfoxide and Dimethyl Sulfone (1987) Cryobiology, 24, pp. 11-16
  • Dorsey, J.G., Dill, K.A., The Molecular Mechanism of Retention in Reversed-Phase Liquid Chromatography (1989) Chem. Rev., 89, pp. 331-346
  • Huggins, R., (2015) Energy Storage: Fundamentals, Materials and Applications, , Springer: New York
  • David, N.A., The Pharmacology of Dimethyl Sulfoxide (1972) Annu. Rev. Pharmacol., 12, pp. 353-374
  • De Gouw, J.A., Warneke, C., Parrish, D.D., Holloway, J.S., Trainer, M., Fehsenfeld, F.C., Emission Sources and Ocean Uptake of Acetonitrile (CH3CH) in the Atmosphere (2003) J. Geophys. Res., 108, pp. ACH21-ACH28
  • Cooke, C., McCallum, C., Pethybridge, A.S., Prue, J.E., Conductance of Acids in Dimethylsulfoxide-I. Conductance of Hydrochloric Acid in DMSO-Water Mixtures at 25°C (1975) Electrochim. Acta, 20, pp. 591-598
  • Kolthoff, I.M., Bruckenstein, S., Chantooni, M.K., Jr., Acid-Base Equilibria in Acetonitrile. Spectrophotometric and Conductometric Determination of the Dissociation of Various Acids (1961) J. Am. Chem. Soc., 83, pp. 3927-3935
  • Laria, D., Kapral, R., Estrin, D., Ciccotti, G., Molecular Dynamics Study of Solvation Effects on Acid Dissociation in Aprotic Media (1996) J. Chem. Phys., 104, pp. 6560-6568
  • Semino, R., Zaldívar, G., Calvo, E.J., Laria, D., Lithium Solvation in Dimethyl Sulfoxide Acetonitrile Mixtures (2014) J. Chem. Phys., 141, p. 214509
  • Mozhzhukhina, N., Longinotti, M.P., Corti, H., Calvo, E.J., A Conductivity Study of Preferential Solvation of Lithium Ion in Acetonitrile-Dimethyl Sulfoxide Mixtures (2015) Electrochim. Acta, 154, pp. 456-461
  • Bernardi, E., Stassen, H., Molecular Dynamics Simulations of Acentonitrile/Dimethylsulfoxide Liquid Mixtures (2004) J. Chem. Phys., 120, pp. 4860-4867
  • Fort, J., Moore, W.R., Adiabatic Compressibilities of Binary Liquid Mixtures (1965) Trans. Faraday Soc., 61, pp. 2102-2111
  • Mountain, R.D., Molecular Dynamics Simulation of Water-Acetonitrile Mixtures in a Silica Slit (2013) J. Phys. Chem. C, 117, pp. 3923-3929
  • Allen, H.C., Raymond, E.A., Richmond, G.L., Non-Linear Vibrational Sum Frequency Spectroscopy of Atmospherically Relevant Molecules at Aqueous Solution Surfaces (2000) Curr. Opin. Colloid Interface Sci., 5, pp. 74-80
  • Makowski, M.J., Stern, A.C., Hemminger, J.C., Tobias, D.J., Orientation and Structure of Acetonitrile in Water at the Liquid-Vapor Interface: A Molecular Dynamics Simulation Study (2016) J. Phys. Chem. C, 120, pp. 17555-17563
  • Zhang, D., Gutow, J.H., Eisenthal, K.B., Heinz, T.F., Sudden Structural Change at the Air/Binary Liquid Interface: Sum Frequency Study of the Air/Acentonitrile Interface (1993) J. Chem. Phys., 98, pp. 5099-5101
  • Allen, H.C., Gragson, D.E., Richmond, G.L., Molecular Structure and Adsorption of Dimethyl Sulfoxide at the Surface of Aqueous solutions (1999) J. Phys. Chem. B, 103, pp. 660-666
  • Fábián, B., Idrissi, A., Marekha, B., Jedlovszky, P., Local Lateral Environment of the Molecules at the Surface of DMSO-Water Mixtures (2016) J. Phys.: Condens. Matter, 28, p. 404002
  • Rivera, C.A., Bender, J.S., Manfred, K., Fourkas, J.T., Persistence of Acetonitrile Bilayers at the Interface Acetonitrile/Water Mixtures with Silica (2013) J. Phys. Chem. A, 117, pp. 12060-12066
  • Idrissi, A., Marekha, B., Kiselev, M., Jedlovszky, P., The Local Environment of Molecules in Water-DMSO Mixtures, as seen from Computer Simulations and Voronoi Polyhedra Analysis (2015) Phys. Chem. Chem. Phys., 17, pp. 3470-3481
  • Mountain, R.D., Microsctructure and Hydrogen Bonding in Water-Acetonitrile Mixtures (2010) J. Phys. Chem. B, 114, pp. 16460-16464
  • Fábián, B., Jójárt, B., Horvai, G., Jedlovszky, P., Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study (2015) J. Phys. Chem. C, 119, pp. 12473-12487
  • Pártay, L.B., Jedlovszky, P., Horvai, G., Structure of the Liquid-Vapor Interface of Water-Acetonitrile Mixtures as seen from Molecular Dynamics Simulations and Identification of Truly Interfacial Molecules Analysis (2009) J. Phys. Chem. C, 113, pp. 18173-18183
  • Bresme, F., Chacón, P., Tarazona, Tay, K., Intrinsic Structure of Hydrophonic Surfaces: The Oil-Water Interface (2008) Phys. Rev. Lett., 101, p. 056102
  • Remsing, R.C., Rodgers, J.M., Weeks, J.D., Deconstruction Classical Water Models at Interfaces and in Bulk (2011) J. Stat. Phys., 145, pp. 313-334
  • Willard, A.P., Chandler, D., The Molecular Structure of the Interface between Water and a Hydrophobic Substrate is Liquid-Vapor Like (2014) J. Chem. Phys., 141, p. 18C519
  • Rodriguez, J., Elola, M.D., Laria, D., Coaxial Cross-Diffusion through Carbon Nanotubes (2009) J. Phys. Chem. B, 113, pp. 14844-14848
  • Grande, L., Paillard, E., Hassoun, J., Park, J.-B., Lee, Y.-J., Sun, Y.-K., Passerini, S., Scrosati, B., The Lithium/Air Battery: Still an Emerging System or a Practical Reality? (2015) Adv. Mater., 27, pp. 784-800
  • Nosé, S., Unified Formulation of the Constant Temperature Molecular-Dynamics Methods (1984) J. Chem. Phys., 81, pp. 511-519
  • Hoover, W.G., Canonical Dynamics: Equilibrium Phase-Space Distributions (1985) Phys. Rev. A: At., Mol., Opt. Phys., 31, pp. 1695-1697
  • Strader, M., Feller, S.E., Flexible All-Atom Model of Dimethyl Sulfoxide for Molecular Dynamics Simulations (2002) J. Phys. Chem. A, 106, pp. 1074-1080
  • Nikitin, A.M., Lyubartsev, A.P., New Six-site Acetonitrile Model for Simulations of Liquid Acetonitrile and its Aqueous Mixtures (2007) J. Comput. Chem., 28, pp. 2020-2026
  • Phillips, C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable Molecular Dynamics with NAMD (2005) J. Comput. Chem., 26, pp. 1781-1802
  • Foloppe, N., Mac Kerrell, A.D., Jr., All-Atom Empirical Force Field for Nucleic Acids: I. Parameter Optimization Based on Small Molecule and Condesed Phase Macromolecular Target Data (2000) J. Comput. Chem., 21, pp. 86-104
  • Merlet, C., Péan, C., Rotenberg, P.A., Simon, B., Madden, P., Salanne, M., Simulating Supercapacitors: Can We Model Electrodes as Constant Charge Surfaces? (2013) J. Phys. Chem. Lett., 4, pp. 264-268
  • Siepmann, J.I., Sprik, M., Influence of Surface Topology and Electrostatic Potential on Water/Electrode Systems (1995) J. Chem. Phys., 102, pp. 511-524
  • Wang, Z., Yang, Y., Olmsted, D.L., Asta, M., Laird, B.B., Evaluation of the Constant Potential Method in Simulating Electric Double-Layer Capacitors (2014) J. Chem. Phys., 141, p. 184102
  • Chacón, E., Tarazona, P., Intrinsic Profiles beyond the Capillary Wave Theory: A Monte Carlo Study (2003) Phys. Rev. Lett., 91, p. 166103
  • Chacón, E., Tarazona, P., Alejandre, J., The Intrinsic Structure of the Water Surface (2006) J. Chem. Phys., 125, p. 014709
  • Fern, J.R., Keffer, D.J., Steele, W.V., Vapor-Liquid Equilibrium of Ethanol by Molecular Dyanamics Simulation and Voronoi Tesselation (2007) J. Phys. Chem. B, 111, pp. 13278-13286
  • Willard, A., Chandler, D., Instantaneous Liquid Interfaces (2010) J. Phys. Chem. B, 114, pp. 1954-1958
  • Jorge, M., Jedlovszky, P., Cordeiro, M.N.D.S., A Critical Assessment of Methods for the Intrisic Analysis of Liquid Interface. 1. Surface Site Distributions (2010) J. Phys. Chem. C, 114, pp. 11169-11179
  • Pártay, L.B., Hantal, G., Jedlovszky, P., Vincze, A., Horvai, G., A New Method for Determining the Interfacia Molecules and Characterizing the Surface Roughness in Computer Simulations. Applications to the Liquid-Vapor Interface of Water (2008) J. Comput. Chem., 29, pp. 945-956
  • Darvas, M., Jojják, K., Horvai, G., Jedlovszky, P., Molecular Dynamics Simulation and Identification of the Truly Interfacial Molecules (ITIM) Analysis of the Liquid-Vapor Interface of Dimethylsulfoxide (2010) J. Chem. Phys., 132, p. 134701
  • Butler, J.A.V., The Thermodynamics of the Surfaces of Solutions (1932) Proc. R. Soc. London, Ser. A, 135, pp. 348-375
  • Nath, S., Surface Tension of Nonideal Binary Liquid Mixtures as a Function of Composition (1999) J. Colloid Interface Sci., 209, pp. 116-122
  • Jasper, J.J., The Surface Tension of Pure Liquid Compounds (2009) J. Phys. Chem. Ref. Data, 1, pp. 841-1010
  • Paul, S., Chandra, A., Molecular Dynamics Study of th Liquid-Vapor Interface of Acetonitrile: Equilibrium and Dynamical Properties (2005) J. Phys. Chem. B, 109, pp. 20558-20564
  • Hu, Z., Weeks, J.D., Acetonitrile on Silica Surfaces and at Its Liquid-Vapor Interface: Structural Correlations and Collective Dynamics (2010) J. Phys. Chem. C, 114, pp. 10202-10211
  • Velarde, L., Zhang, X.-Y., Lu, Z., Joly, A.G., Wang, Z., Wang, H.-F., Communication: Spectroscopic Phase and Lineshapes in High-Resolution Broadband Sum Frequency Vibrational Spectroscopy: Resolving Interfacial Inhomogeneities of "identical" Molecular Groups (2011) J. Chem. Phys., 135, p. 241102
  • Shen, J., He, Y., Wu, J., Gao, C., Zhang, X., Yang, Y., Ye, M., Ajayan, P.M., Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components (2015) Nano Lett., 15, pp. 5449-5454
  • Owens, D.K., Some Thermodynamic Aspects of Polymer Adhesion (1970) J. Appl. Polym. Sci., 14, pp. 1725-1730
  • Fowkes, F.M., Attractive Forces at Interfaces (1964) Ind. Eng. Chem., 56, pp. 40-52
  • Meyer, M., Mareschal, M., Hayoun, M., A Comparison of the Structure and Dynamics of Liquid Water at Hydrophobic and Hydrophilic Surfaces - A Molecular Dyanmics Simulation Study (1988) J. Chem. Phys., 89, pp. 1067-1073
  • Michael, D., Benjamin, I., Molecular Dynamics Simulation of the Water|Nitrobenzene Interface (1998) J. Electroanal. Chem., 450, pp. 335-345
  • Benjamin, I., Theoretical Study of the Water/1,2-Dichloroethane Interface: Structure, Dynamics, and Conformational Equilibria at the Liquid-Liquid Interface (1992) J. Chem. Phys., 97, pp. 1432-1445
  • Senapati, S., A Molecular Dyanamics Simulation Study of the Dimethyl Sulfoxide Liquid-Vapor Interface (2002) J. Chem. Phys., 117, pp. 1812-1816
  • Liu, P., Harder, E., Berne, B.J., On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid-Vapor Interface of Water (2004) J. Phys. Chem. B, 108, pp. 6595-6602
  • Pártay, L.B., Jedlovszky, P., Vincze, A., Horvai, G., Properties of Free Surface of Water-Methanol Mixtures. Analysis of the Truly Interfacial Molecular Layer in Computer Simulation (2008) J. Phys. Chem. B, 112, pp. 5428-5438
  • Zwanzig, R., On the Relationa between Self-Diffusion and Viscosity of Liquids (1983) J. Chem. Phys., 79, pp. 4507-4508
  • Saha, N., Das, B., Hazra, D.K., Viscosities and Excess Molar Volumes for Acetonitrile + Methanol at 298.15, 308.15, and 318.15 K (1995) J. Chem. Eng. Data, 40, pp. 1264-1266
  • Blokkdal, E.H., (2014) Self-Diffusion Coefficient of Bulk Fluid Molecules Probed by Transverse Relaxation Measurements in An Inhomogeneous Magnetic Field, , Ms. Sci. Dissertation, University of Oslo, Norway
  • Lu, R., Gan, W., Wu, B.-H., Zhang, Z., Guo, Y., Wang, H.-F., C-H Stretching Vibrations of Methyl, Methylene and Methine Groups at the Vapor/Alcohol (n = 1-8) Interfaces (2005) J. Phys. Chem. B, 109, pp. 14118-14129
  • Joseph, J., Jemmis, E.D., Red-, Blue-, or No-Shift in Hydrogen Bonds: A Unified Explanation (2007) J. Am. Chem. Soc., 129, pp. 4620-4632
  • Li, X., Liu, L., Schlegel, H.B., On the Physical Origin of Blue-Shifted Hydrogen Bonds (2002) J. Am. Chem. Soc., 124, pp. 9639-9647
  • Roelfs, B., Schröter, C., Solomun, T.A., Comparison of Metal/Vaccum and Metal/Electrolyte Interfaces: The Au(100)/(Dimethylsulfoxide) and (Dimethylsulfoxide+Acetonitrile) Systems (1997) Ber. Bunsen-Ges. Phys. Chem., 101, pp. 1105-1112

Citas:

---------- APA ----------
Rodriguez, J., Elola, M.D., Martí, J. & Laria, D. (2017) . Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile. Journal of Physical Chemistry C, 121(27), 14618-14627.
http://dx.doi.org/10.1021/acs.jpcc.7b03154
---------- CHICAGO ----------
Rodriguez, J., Elola, M.D., Martí, J., Laria, D. "Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile" . Journal of Physical Chemistry C 121, no. 27 (2017) : 14618-14627.
http://dx.doi.org/10.1021/acs.jpcc.7b03154
---------- MLA ----------
Rodriguez, J., Elola, M.D., Martí, J., Laria, D. "Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile" . Journal of Physical Chemistry C, vol. 121, no. 27, 2017, pp. 14618-14627.
http://dx.doi.org/10.1021/acs.jpcc.7b03154
---------- VANCOUVER ----------
Rodriguez, J., Elola, M.D., Martí, J., Laria, D. Surface Behavior of Aprotic Mixtures: Dimethyl Sulfoxide/Acetonitrile. J. Phys. Chem. C. 2017;121(27):14618-14627.
http://dx.doi.org/10.1021/acs.jpcc.7b03154