Artículo

Velasco, M.I.; Franzoni, M.B.; Franceschini, E.A.; Gonzalez Solveyra, E.; Scherlis, D.; Acosta, R.H.; Soler-Illia, G.J.A.A. "Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations" (2017) Journal of Physical Chemistry C. 121(13):7533-7541
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adsorption of water vapor in mesoporous TiO2 was studied by nuclear magnetic resonance (NMR) and multiscale molecular dynamics simulations. Three different water environments were distinguished and quantified: a first layer, where strongly bound water molecules exist at the inner surfaces; a second less structured layer but still with restricted mobility; and a bulk-like fraction of mobile water. The obtained NMR results can be explained in the framework of molecular dynamics simulations that give insight on the filling mechanisms in TiO2 nanoporous materials. For these highly hydrophilic materials, it is shown that adsorption isotherms may render a smaller effective pore size due to the presence of a layer of highly bound water. The synergistic combination of experimental NMR data and MD simulations renders a detailed analysis of the water dynamics inside the titania pore space. © 2017 American Chemical Society.

Registro:

Documento: Artículo
Título:Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations
Autor:Velasco, M.I.; Franzoni, M.B.; Franceschini, E.A.; Gonzalez Solveyra, E.; Scherlis, D.; Acosta, R.H.; Soler-Illia, G.J.A.A.
Filiación:FAMAF, Universidad Nacional de Córdoba, IFEG-CONICET, Córdoba, 5016, Argentina
INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, 5000, Argentina
DQIAQF, Facultad de Ciencias Exactas y Naturales, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
Department of Biomedical Engineering, Department of Chemistry and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60209, United States
Instituto de Nanosistemas, Universidad Nacional de General San Martín, Avenida 25 de Mayo y Francia, San Martín, 1650, Argentina
Palabras clave:Molecular dynamics; Molecules; Nuclear magnetic resonance; Nuclear magnetic resonance spectroscopy; Pore size; Porous materials; Titanium dioxide; Adsorption of water vapors; Bound water molecules; Hydrophilic materials; Molecular dynamics simulations; Nano-porous materials; Nuclear magnetic resonance(NMR); Restricted mobilities; Synergistic combinations; Driers (materials)
Año:2017
Volumen:121
Número:13
Página de inicio:7533
Página de fin:7541
DOI: http://dx.doi.org/10.1021/acs.jpcc.6b12511
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v121_n13_p7533_Velasco

Referencias:

  • Davis, M.E., Ordered Porous Materials for Emerging Applications (2002) Nature, 417, pp. 813-821
  • Li, W., Zhao, D., An Overview of the Synthesis of Ordered Mesoporous Materials (2013) Chem. Commun., 49, pp. 943-946
  • Corma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis (1997) Chem. Rev., 97, pp. 2373-2419
  • Li, W., Wu, Z., Wang, J., Elzatahry, A.A., Zhao, D., A Perspective on Mesoporous TiO2Materials (2014) Chem. Mater., 26, pp. 287-298
  • Bhanja, P., Bhaumik, A., Porous Nanomaterials as Green Catalyst for the Conversion of Biomass to Bioenergy (2016) Fuel, 185, pp. 432-441
  • Azaïs, T., Tourné-Péteilh, C., Aussenac, F., Baccile, N., Coelho, C., Devoisselle, J.M., Babonneau, F., Solid-State NMR Study of Ibuprofen Confined in MCM-41 Material (2006) Chem. Mater., 18, pp. 6382-6390
  • Viva, F.A., Bruno, M.M., Franceschini, E.A., Thomas, Y.R.J., Ramos Sanchez, G., Solorza-Feria, O., Corti, H.R., Mesoporous Carbon as Pt Support for PEM Fuel Cell (2014) Int. J. Hydrogen Energy, 39, pp. 8821-8826
  • Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., Sing, K.S., (2013) Adsorption by Powders and Porous Solids: Principles, Methodology and Applications., , Elsevier: New York
  • Li, Q., Song, J., Besenbacher, F., Dong, M., Two-Dimensional Material Confined Water (2015) Acc. Chem. Res., 48, pp. 119-127
  • Steiner, E., Bouguet-Bonnet, S., Blin, J.-L., Canet, D., Water Behavior in Mesoporous Materials as Studied by NMR Relaxometry (2011) J. Phys. Chem. A, 115, pp. 9941-9946
  • Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G.H., Limbach, H.H., Buntkowsky, G., Hydrogen Bonding of Water Confined in Mesoporous Silica MCM-41 and SBA-15 Studied by 1H Solid-State NMR (2004) Chem. - Eur. J., 10, pp. 5689-5696
  • Shirono, K., Daiguji, H., Molecular Simulation of the Phase Behavior of Water Confined in Silica Nanopores (2007) J. Phys. Chem. C, 111, pp. 7938-7946
  • Yamashita, K., Daiguji, H., Molecular Dynamics Simulations of Water Uptake into a Silica Nanopore (2015) J. Phys. Chem. C, 119, pp. 3012-3023
  • Solveyra, E.G., Del La Llave, E., Molinero, V., Soler-Illia, G.J.A.A., Scherlis, D.A., Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores (2013) J. Phys. Chem. C, 117, pp. 3330-3342
  • Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A., Sorption Isotherms of Water in Nanopores: Relationship between Hydropohobicity, Adsorption Pressure, and Hysteresis (2014) J. Phys. Chem. C, 118, pp. 16290-16300
  • Bonnaud, P.A., Coasne, B., Pellenq, R.J.-M., Molecular Simulation of Water Confined in Nanoporous Silica (2010) J. Phys.: Condens. Matter, 22, p. 284110
  • Milischuk, A.A., Ladanyi, B.M., Structure and Dynamics of Water Confined in Silica Nanopores (2011) J. Chem. Phys., 135, p. 174709
  • Bourg, I.C., Steefel, C.I., Molecular Dynamics Simulations of Water Structure and Diffusion in Silica Nanopores (2012) J. Phys. Chem. C, 116, pp. 11556-11564
  • Yamashita, K., Daiguji, H., Molecular Simulations of Water Adsorbed on Mesoporous Silica Thin Films (2013) J. Phys. Chem. C, 117, pp. 2084-2095
  • Renou, R., Szymczyk, A., Ghoufi, A., Influence of the Pore Length on the Properties of Water Confined in a Silica Nanopore (2014) Mol. Phys., 112, pp. 2275-2281
  • Milischuk, A.A., Krewald, V., Ladanyi, B.M., Water Dynamics in Silica Nanopores: The Self-Intermediate Scattering Functions (2012) J. Chem. Phys., 136, p. 224704
  • Chen, X., Mao, S.S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications (2007) Chem. Rev., 107, pp. 2891-2959
  • Gerasimova, T.V., Evdokimova, O.L., Kraev, A.S., Ivanov, V.K., Agafonov, A.V., Micro-Mesoporous Anatase TiO2 Nanorods with High Specific Surface Area Possessing Enhanced Adsorption Ability and Photocatalytic Activity (2016) Microporous Mesoporous Mater., 235, pp. 185-194
  • Coakley, K.M., McGehee, M.D., Photovoltaic Cells Made from Conjugated Polymers Infiltrated into Mesoporous Titania (2003) Appl. Phys. Lett., 83, pp. 3380-3382
  • Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A., A Review on Highly Ordered, Vertically Oriented TiO2 Nanotube Arrays: Fabrication, Material Properties, and Solar Energy Applications (2006) Sol. Energy Mater. Sol. Cells, 90, pp. 2011-2075
  • Fujishima, A., Zhang, X., Tryk, D.A., TiO2 Photocatalysis and Related Surface Phenomena (2008) Surf. Sci. Rep., 63, pp. 515-582
  • Nosaka, A.Y., Kojima, E., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y., Photoinduced Changes of Adsorbed Water on a TiO2 Photocatalytic Film As Studied by 1H NMR Spectroscopy (2003) J. Phys. Chem. B, 107, pp. 12042-12044
  • Nosaka, A.Y., Fujiwara, T., Yagi, H., Akutsu, H., Nosaka, Y., Characteristics of Water Adsorbed on TiO2 Photocatalytic Systems with Increasing Temperature as Studied by Solid-state 1H NMR Spectroscopy (2004) J. Phys. Chem. B, 108, pp. 9121-9125
  • Zhu, L., Gu, Q., Sun, P., Chen, W., Wang, X., Xue, G., Characterization of the Mobility and Reactivity of Water Molecules on TiO2 Nanoparticles by 1H Solid-State Nuclear Magnetic Resonance (2013) ACS Appl. Mater. Interfaces, 5, pp. 10352-10356
  • Pajzderska, A., Gonzalez, M.A., Mielcarek, J., Wa̧sicki, J., Water Behavior in MCM-41 as a Function of Pore Filling and Temperature Studied by NMR and Molecular Dynamics Simulations (2014) J. Phys. Chem. C, 118, pp. 23701-23710
  • Zelcer, A., Soler-Illia, G.J.A.A., One-Step Preparation of UV Transparent Highly Ordered Mesoporous Zirconia Thin Films (2013) J. Mater. Chem. C, 1, p. 1359
  • Zelcer, A., Franceschini, E., Lombardo, M.V., Soler-Iilia, G.S.A.A., General Method to Produce Mesoporous Transition Metal Oxide Spherical Particles from Aqueous-Based Media Spray Drying, , Submitted for publication
  • Soler Illia, G.J.A.A., Zelcer, A., Lombardo, M.V., Franceschini, E., (2015) Un Procedimiento Para la Obtención de Partĺculas Esféricas de Óxidos Metálicos Mesoporosos de Composición, Área Superficial, Porosidad y Tamaño Controlados, , Argentine Patent December 28
  • Greenspan, L., Humidity Fixed Points of Binary Saturated Aqueous Solutions (1977) J. Res. Natl. Bur. Stand., Sect. A, 81, p. 89
  • Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • LAMMPS, Molecular Dynamics Simulator, , http://lammps.sandia.gov, Sandia
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual Molecular Dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Bandura, A.V., Kubicki, J.D., Derivation of Force Field Parameters for TiO2-H2O Systems from a Initio Calculations (2003) J. Phys. Chem. B, 107, pp. 11072-11081
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., The Missing Term in Effective Pair Potentials (1987) J. Phys. Chem., 91, pp. 6269-6271
  • Molinero, V., Moore, E.B., Water Modeled as an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • González Solveyra, E., De La Llave, E., Scherlis, D.A., Molinero, V., Melting and Crystallization of Ice in Partially Filled Nanopores (2011) J. Phys. Chem. B, 115, pp. 14196-14204
  • Violi, I.L., Perez, M.D., Fuertes, M.C., Soler-Illia, G.J.A.A., Highly Ordered, Accessible and Nanocrystalline Mesoporous TiO2 Thin Films on Transparent Conductive Substrates (2012) ACS Appl. Mater. Interfaces, 4, pp. 4320-4330
  • Wei, M.J., Zhou, J., Lu, X., Zhu, Y., Liu, W., Lu, L., Zhang, L., Diffusion of Water Molecules Confined in Slits of Rutile TiO2(110) and graphite(0001) (2011) Fluid Phase Equilib., 302, pp. 316-320
  • Předota, M., Bandura, A.V., Cummings, P.T., Kubicki, J.D., Wesolowski, D.J., Chialvo, A.A., Machesky, M.L., Electric Double Layer at the Rutile (110) Surface. 1. Structure of Surfaces and Interfacial Water from Molecular Dynamics by Use of Ab Initio Potentials (2004) J. Phys. Chem. B, 108, pp. 12049-12060
  • Graf, R., Heuer, A., Spiess, H.W., Chain-Order Effects in Polymer Melts Probed by 1H Double-Quantum NMR Spectroscopy (1998) Phys. Rev. Lett., 80, pp. 5738-5741
  • Voda, M.A., Demco, D.E., Perlo, J., Orza, R.A., Blümich, B., Multispin Moments Edited by Multiple-Quantum NMR: Application to Elastomers (2005) J. Magn. Reson., 172, pp. 98-109
  • Saalwächter, K., Proton Multiple-Quantum NMR for the Study of Chain Dynamics and Structural Constraints in Polymeric Soft Materials (2007) Prog. Nucl. Magn. Reson. Spectrosc., 51, pp. 1-35
  • Acosta, R.H., Vega, D.A., Villar, M.A., Monti, G.A., Vallés, E.M., Double Quantum NMR Applied to Polymer Networks with Low Concentration of Pendant Chains (2006) Macromolecules, 39, pp. 4788-4792
  • Acosta, R.H., Monti, G.A., Villar, M.A., Vallés, E.M., Vega, D.A., Transiently Trapped Entanglements in Model Polymer Networks (2009) Macromolecules, 42, pp. 4674-4680
  • Brown, S.P., Applications of High-Resolution 1H Solid-State NMR (2012) Solid State Nucl. Magn. Reson., 41, pp. 1-27
  • Suzuki, Y., Steinhart, M., Graf, R., Butt, H.J., Floudas, G., Dynamics of Ice/Water Confined in Nanoporous Alumina (2015) J. Phys. Chem. B, 119, pp. 14814-14820
  • Xu, Y., Watermann, T., Limbach, H.-H., Gutmann, T., Sebastiani, D., Buntkowsky, G., Water and Small Organic Molecules as Probes for Geometric Confinement in Well-Ordered Mesoporous Carbon Materials (2014) Phys. Chem. Chem. Phys., 16, pp. 9327-9336
  • Boden, N., Mortimer, M., An NMR "solid" echo Experiment for the Direct Measurement of the Dipolar Interactions between Spin- 1 2 Pairs in Solids (1973) Chem. Phys. Lett., 21, pp. 538-540
  • Yamamoto, S., Bluhm, H., Andersson, K., Ketteler, G., Ogasawara, H., Salmeron, M., Nilsson, A., In Situ X-Ray Photoelectron Spectroscopy Studies of Water on Metals and Oxides at Ambient Conditions (2008) J. Phys.: Condens. Matter, 20, p. 184025
  • Lunpang, C., Lindsay, R., Thornton, G., Chemical Reactions on Rutile TiO2(110) (2008) Chem. Soc. Rev., 37, pp. 2328-2353
  • Bavykin, D.V., Carravetta, M., Kulak, A.N., Walsh, F.C., Application of Magic-Angle Spinning NMR to Examine the Nature of Protons in Titanate Nanotubes (2010) Chem. Mater., 22, pp. 2458-2465
  • Martínez, E.D., Boissière, C., Grosso, D., Sanchez, C., Troiani, H., Soler-Illia, G.J.A.A., Confinement-Induced Growth of Au Nanoparticles Entrapped in Mesoporous TiO2 Thin Films Evidenced by in Situ Thermo-Ellipsometry (2014) J. Phys. Chem. C, 118, pp. 13137-13151
  • Frančič, N., Bellino, M.G., Soler-Illia, G.J.A.A., Lobnik, A., Mesoporous Titania Thin Films as Efficient Enzyme Carriers for Paraoxon Determination/detoxification: Effects of Enzyme Binding and Pore Hierarchy on the Biocatalyst Activity and Reusability (2014) Analyst, 139, pp. 3127-3136
  • Fuertes, M.C., Colodrero, S., Lozano, G., González-Elipe, A.R., Grosso, D., Boissière, C., Sanchez, C., Míguez, H., Sorption Properties of Mesoporous Multilayer Thin Films (2008) J. Phys. Chem. C, 112, pp. 3157-3163

Citas:

---------- APA ----------
Velasco, M.I., Franzoni, M.B., Franceschini, E.A., Gonzalez Solveyra, E., Scherlis, D., Acosta, R.H. & Soler-Illia, G.J.A.A. (2017) . Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations. Journal of Physical Chemistry C, 121(13), 7533-7541.
http://dx.doi.org/10.1021/acs.jpcc.6b12511
---------- CHICAGO ----------
Velasco, M.I., Franzoni, M.B., Franceschini, E.A., Gonzalez Solveyra, E., Scherlis, D., Acosta, R.H., et al. "Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations" . Journal of Physical Chemistry C 121, no. 13 (2017) : 7533-7541.
http://dx.doi.org/10.1021/acs.jpcc.6b12511
---------- MLA ----------
Velasco, M.I., Franzoni, M.B., Franceschini, E.A., Gonzalez Solveyra, E., Scherlis, D., Acosta, R.H., et al. "Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations" . Journal of Physical Chemistry C, vol. 121, no. 13, 2017, pp. 7533-7541.
http://dx.doi.org/10.1021/acs.jpcc.6b12511
---------- VANCOUVER ----------
Velasco, M.I., Franzoni, M.B., Franceschini, E.A., Gonzalez Solveyra, E., Scherlis, D., Acosta, R.H., et al. Water Confined in Mesoporous TiO2 Aerosols: Insights from NMR Experiments and Molecular Dynamics Simulations. J. Phys. Chem. C. 2017;121(13):7533-7541.
http://dx.doi.org/10.1021/acs.jpcc.6b12511