Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present results from computer simulations that shed light on structural and dynamic characteristics of hydrogen bonding of aqueous phases at ambient conditions, at the close vicinity of electrified metal interfaces. Our simulation strategy relied on the consideration of a Hamiltonian that explicitly incorporates effects from polarization fluctuations at the metal surface, induced by the instantaneous local electric field promoted by the partial charges at the solvent molecules. Compared to bulk environments, our results reveal important modifications in the hydrogen bond architectures that critically depend on the atomic arrangements of the interfaces exposed to the liquid phases and the net charges allocated at the metal plates. These modifications have equally important consequences on the characteristic time scales describing the ruptures of hydrogen bonds which are operated by mechanisms which are absent in descriptions that omit atomic detail and polarization fluctuations at the metal plates. We also analyze how the latter modifications are translated into spectral shifts in the stretching bands of infrared spectra of water adlayers. © 2016 American Chemical Society.

Registro:

Documento: Artículo
Título:Hydrogen bond dynamics at water/Pt interfaces
Autor:Videla, P.E.; Ansourian, L.; Laria, D.
Filiación:Departamento de Química Inorganica, Analítica y Química-Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon II, Buenos Aires, 1428, Argentina
Departamento de Física de la Materia Condensada, Comision Nacional de Energía Atomica, Avenida Libertador 8250, Buenos Aires, 1429, Argentina
Palabras clave:Electric fields; Hamiltonians; Metals; Phase interfaces; Plates (structural components); Polarization; Ambient conditions; Atomic arrangement; Characteristic time; Dynamic characteristics; Hydrogen bond dynamics; Local electric field; Polarization fluctuations; Simulation strategies; Hydrogen bonds
Año:2016
Volumen:120
Número:48
Página de inicio:27276
Página de fin:27284
DOI: http://dx.doi.org/10.1021/acs.jpcc.6b07504
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v120_n48_p27276_Videla

Referencias:

  • Wieckowski, A., (1999) Interfacial Electrochemistry: Theory, Experiments and Applications, , Marcel Dekker, Inc.: New York
  • Levich, V.G., Kinetics of reactions with charge transfer (1970) Physical Chemistry, an Advanced Treatise, , Eyring, H., Henderson, D., Jost, W., Eds.; Academic Press: New York
  • Kuznetsov, A.M., (1995) Charge Transfer in Physics, Chemistry and Biology, , Gordon and Breach, Reading, PA
  • Miller, A.D., Bezel, I., Gaffney, K.J., Garrett-Roel, S., Liu, S.H., Szymanski, P., Harris, C.B., Electron solvation in two dimensions (2002) Science, 297, pp. 1163-1166
  • Stahler, J., Bovensiepen, W., Meyer, M., Wolf, M., A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces (2008) Chem. Soc. Rev., 37, pp. 2180-2190
  • Wilhelm, F., Schmickler, W., Spohr, E., Proton transfer to charged platinum electrodes (2010) J. Phys.: Condens. Matter, 22, p. 175001
  • Cao, Z., Kumar, R., Peng, Y., Voth, G.A., Proton transport under external applied voltage (2014) J. Phys. Chem. B, 118, pp. 8090-8098
  • Khaselev, O., Tuner, J.A., A monolithic photovoltaic-photo-electrochemical device for hydrogen production via water splitting (1998) Science, 280, pp. 425-427
  • Santos, E., Quaino, P., Schmickler, W., Theory of electrocatalysis: Hydrogen evolution and more (2012) Phys. Chem. Chem. Phys., 14, pp. 11224-11233
  • Roberge, P.R., (2012) Handbook of Corrosion Engineering, , McGraw-Hill: New York
  • Eliaz, N., (2012) Applications of Electrochemistry and Nano-technology in Biology and Medicine II, , Springer: New York
  • Hodgson, A., Haq, S., Water adsorption and the wetting of metal surfaces (2009) Surf. Sci. Rep., 64, pp. 381-451
  • Carrasco, J., Hodgson, A., Michaelides, A., A molecular perspective of water at metal interfaces (2012) Nat. Mater, 11, pp. 667-674
  • Michaelides, A., Density functional theory simulations of water-metal interfaces: Waltzing waters, A novel 2D ice phase, and more (2006) Appl. Phys. A: Mater. Sci. Process., 85, pp. 415-425
  • Okuyama, H., Hamada, I., Hydrogen-bond imaging and engineering with a scanning tunnelling microscope (2011) J. Phys. D: Appl. Phys., 44, p. 464004
  • Kimmel, G.A., Petrik, N.G., Dohnalek, Z., Kay, B.D., Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer (2005) Phys. Rev. Lett., 95, p. 166102
  • Thurmer, K., Bartelt, N., Growth of multilayer ice films and the formation of cubic ice imaged with STM (2008) Phys. Rev. B: Condens. Matter Mater. Phys., 77, p. 195425
  • Tatarkhanov, M., Ogletree, D.F., Rose, F., Mitsui, T., Fomin, E., Maier, S., Rose, M., Salmeron, M., Metal- and hydrogen-bonding competition during water adsorption on Pd(111) and Ru(0001) (2009) J. Am. Chem. Soc., 131, pp. 18425-18434
  • Bjorneholm, O., Hansen, M.H., Hodgson, A., Liu, L.-M., Limmer, D.T., Michaelides, A., Pedevilla, P., Bluhm, H., Water at interfaces (2016) Chem. Rev., 116, pp. 7698-7726
  • Spohr, E., Heinzinger, K., Molecular dynamics study on the water/metal interfacial potential (1998) Ber. Bunsen-Ges. Phys. Chem., 92, pp. 1358-1363
  • Spohr, E., Computer simulation of the water/platinum interface (1989) J. Phys. Chem., 93, pp. 6171-6180
  • Raghavan, K., Foster, K., Berkowitz, M., Comparison of the structure and dynamics of water at the Pt(111) and Pt(100) interfaces: Molecular dynamics study (1991) Chem. Phys. Lett., 177, pp. 426-432
  • Xia, X., Perera, L., Essmann, U., Berkowitz, M.L., The structure of water at platinum/water interfaces. Molecular dynamics computer simulations (1995) Surf. Sci., 335, pp. 401-415
  • Limmer, D.T., Willard, A.P., Madden, P., Chandler, D., Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 4200-4205
  • Willard, A.P., Reed, S.K., Madden, P.A., Chandler, D.C., Water at an electrochemical interface - A simulation study (2009) Faraday Discuss., 141, pp. 423-441
  • Limmer, D.T., Merlet, C., Salanne, M., Chandler, D., Madden, P.A., Van Roij, R., Rotenberg, B., Charge fluctuations in nanoscale capacitors (2013) Phys. Rev. Lett., 111, p. 106102
  • Willard, A.P., Limmer, D.T., Madden, P.A., Chandler, D., Characterizing heterogeneous dynamics at hydrated electrode surfaces (2012) J. Chem. Phys., 138, p. 184702
  • Limmer, D.T., Willard, A.P., Madden, P.A., Chandler, D., Water exchange at a hydrated platinum electrode is rare and collective (2015) J. Phys. Chem. C, 119, pp. 24016-24024
  • Limmer, D.T., Willard, A.P., Nanoscale heterogeneity at the aqueous electrolyte-electrode interface (2015) Chem. Phys. Lett., 620, pp. 144-150
  • Luzar, A., Chandler, D., Hydrogen-bond kinetics in liquid water (1996) Nature, 379, pp. 55-57
  • Luzar, A., Chandler, D., Effect of environment on hydrogen bond dynamics in liquid water (1996) Phys. Rev. Lett., 76, p. 928
  • Luzar, A., Resolving the hydrogen bond dynamics conundrum (2000) J. Chem. Phys., 113, p. 10663
  • Starr, F.W., Nielsen, J.K., Stanley, H.E., Fast and slow dynamics of hydrogen bonds in liquid water (1999) Phys. Rev. Lett., 82, pp. 2294-2297
  • Eaves, J.D., Loparo, J.J., Fecko, C.J., Roberts, S.T., Tokmakoff, A., Geissler, P.L., Hydrogen bonds in liquid water are broken only fleetingly (2005) Proc. Natl. Acad. Sci. U. S. A., 102, pp. 13019-13022
  • Guardia, E., Laria, D., Martí, J., Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions (2006) J. Phys. Chem. B, 110, pp. 6332-6338
  • Sciortino, F., Poole, P.H., Stanley, H.E., Havlin, S., Lifetime of the bond network and gel-like anomalies in supercooled water (1990) Phys. Rev. Lett., 64, pp. 1686-1689
  • Chandra, A., Effects of ion atmosphere on hydrogen-bond dynamics in aqueous electrolyte solutions (2000) Phys. Rev. Lett., 85, pp. 768-771
  • Kropman, M.F., Bakker, H.J., Dynamics of water molecules in aqueous solvation shells (2001) Science, 291, pp. 2118-2120
  • Galamba, N., Water tetrahedrons, hydrogen-bond dynamics, and the orientational mobility of water around hydrophobic solutes (2014) J. Phys. Chem. B, 118, pp. 4169-4176
  • Rosenfeld, D.E., Schmuttenmaer, C.A., Dynamics of the water hydrogen bond network at ionic, nonionic, and hydrophobic interfaces in nanopores and reverse micelles (2011) J. Phys. Chem. B, 115, pp. 1021-1031
  • Jana, M., Bandyopadhyay, S., Kinetics of hydrogen bonds in aqueous solutions of cyclodextrin and its methyl-substituted forms (2011) J. Chem. Phys., 134, p. 025103
  • Xu, H., Berne, B.J., Hydrogen-bond kinetics in the solvation shell of a polypeptide (2001) J. Phys. Chem. B, 105, pp. 11929-11932
  • Stirnemann, G., Rossky, P.J., Hynes, J.T., Laage, D., Water reorientation, hydrogen-bond dynamics, and 2D-IR spectroscopy next to an extended hydrophobic surface (2010) Faraday Discuss., 146, pp. 263-281
  • Hanasaki, I., Nakatani, A., Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes (2006) J. Chem. Phys., 124, p. 174714
  • Han, S., Kumar, P., Stanley, H.E., Hydrogen-bond dynamics of water in a quasi-two-dimensional hydrophobic nanopore slit (2009) Phys. Rev. E, 79, p. 041202
  • Paul, S., Chandra, A., Hydrogen-bond dynamics at vapour-water and metal-water interfaces (2004) Chem. Phys. Lett., 386, pp. 218-224
  • Liu, P., Harder, E., Berne, B.J., Hydrogen-bond dynamics in the air-water interface (2005) J. Phys. Chem. B, 109, pp. 2949-2955
  • Ni, Y., Gruenbaum, S.M., Skinner, J.L., Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy (2013) Proc. Natl. Acad. Sci. U. S. A., 110, pp. 1992-1998
  • Siepmann, J.I., Sprik, M., Influence of surface topology and electrostatic potential on water/electrode systems (1995) J. Chem. Phys., 102, pp. 511-524
  • Martí, J., Padro, J.A., Guardia, E., Molecular dynamics calculation of the infrared spectra in liquid H2O-D2O mixtures (1994) J. Mol. Liq., 62, pp. 17-31
  • Toukan, K., Rahman, A., Molecular-dynamics study of atomic motions in water (1985) Phys. Rev. B: Condens. Matter Mater. Phys., 31, pp. 2643-2648
  • Chen, S.-H., Toukan, K., Loong, C.-K., Price, D.L., Teixeira, J., Hydrogen-bond spectroscopy of water by neutron scattering (1984) Phys. Rev. Lett., 53, pp. 1360-1363
  • Yeh, I.-C., Berkowitz, M.L., Ewald summation for systems with slab geometry (1999) J. Chem. Phys., 111, pp. 3155-3162
  • Wang, Z., Yang, Y., Olmsted, D.L., Asta, M., Laird, B.B., Evaluation of the constant potential method in simulating electric double-layer capacitors (2014) J. Chem. Phys., 141, p. 184102
  • Kawata, M., Mikami, M., Rapid calculation of two-dimensional ewald summation (2001) Chem. Phys. Lett., 340, pp. 157-164
  • Gingrich, T.R., Wilson, M., On the ewald summation of Gaussian charges for the simulation of metallic surfaces (2010) Chem. Phys. Lett., 500, pp. 178-183
  • Nose, S., Unified formulation of the constant temperature molecular-dynamics methods (1984) J. Chem. Phys., 81, pp. 511-519
  • Hoover, W.G., Canonical dynamics: Equilibrium phase-space distributions (1985) Phys. Rev. A: At., Mol., Opt. Phys., 31, pp. 1695-1697
  • Laage, D., Hynes, J.T., On the molecular mechanism of water reorientation (2008) J. Phys. Chem. B, 112, pp. 14230-14242
  • Laage, D., Stirnemann, G., Sterpone, F., Rey, R., Hynes, J.T., Reorientation and allied dynamics in water and aqueous solutions (2011) Annu. Rev. Phys. Chem., 62, pp. 395-416
  • Martí, J., Guardia, E., Padro, J.A., Dielectric properties and infrared spectra of liquid water: Influence of the dynamic cross correlations (1994) J. Chem. Phys., 101, pp. 10883-10891
  • (2012) Zaera, F. Chem. Rev., 112, pp. 2920-2986
  • Iwasita, T., Xia, X., Adsorption of water at Pt(111) electrode in HClO4 solutions. The potential of zero charge (1996) J. Electroanal. Chem., 411, pp. 95-102
  • Futamata, M., Luo, L., Nishihara, C., ATR-SEIR study of anions and water adsorbed on platinum electrode (2005) Surf. Sci., 590, pp. 196-211
  • Osawa, M., Tsushima, M., Mogami, H., Samjeske, G., Yamakata, A., Structure of water at the electrified platinum-water interface: A study by surface-enhanced infrared absorption spectroscopy (2008) J. Phys. Chem. C, 112, pp. 4248-4256
  • Ataka, K.-I., Yotsuyanagi, T., Osawa, M., Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectros-copy (1996) J. Phys. Chem., 100, pp. 10664-10672
  • Ataka, K.-I., Osawa, M., In-situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions (1998) Langmuir, 14, pp. 951-959
  • Hirota, L., Song, M.-B., Ito, M., In-situ infrared spectroscopy of water and electrolytes adsorbed on a Pt(111) electrode surface in acid solution. Structural changes of adsorbed water molecules upon an electrode potential (1996) Chem. Phys. Lett., 250, pp. 335-341
  • Xu, H., Stern, H.A., Berne, B.J., Can water polarizability Be ignored in hydrogen bond kinetics? (2002) J. Phys. Chem. B, 106, pp. 2054-2060
  • Perera, P.N., Fega, K.R., Lawrence, C., Sundstrom, E.J., Tomlinson-Phillips, J., Ben-Amotz, D., Observation of water dangling OH bonds around dissolved nonpolar groups (2009) Proc. Natl. Acad. Sci. U. S. A., 106, pp. 12230-12234
  • Shen, Y.R., Ostroverkhov, V., Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces (2006) Chem. Rev., 106, p. 1140
  • Wang, Y., Huang, X., Shepler, B.C., Braams, B.J., Bowman, J.M., Flexible, Ab initio potential, and dipole moment surfaces of water. I. Tests and applications for clusters up to 22-mer (2011) J. Chem. Phys., 134, p. 94509
  • Wang, Y., Babin, V., Bowman, J.M., Paesani, F., The water hexamer-cage, prism or both: Full dimensional quantum simulations say both (2012) J. Am. Chem. Soc., 134, p. 11116
  • Babin, V., Leforestier, C., Paesani, F., Development of a "First principles" water potential with flexible monomers: Dimer potential energy surface, VRT spectrum, and second virial coefficient (2013) J. Chem. Theory Comput., 9, pp. 5395-5403
  • Babin, V., Medders, G.R., Paesani, F., Development of a "First principles" water potential with flexible monomers. II. Trimer potential energy surface (2014) J. Chem. Theory Comput., 10, pp. 1599-1607
  • Babin, V., Medders, G.R., Paesani, F., Development of a "First-principles" water potential with flexible monomers. III. Liquid phase properties (2014) J. Chem. Theory Comput., 10, pp. 2906-2910
  • Cisneros, G.A., Wikfeldt, J.T., Ojamae, L., Lu, J., Xu, Y., Torabifard, H., Bartok, A., Paesani, F., Modeling molecular interactions in water: From pairwise to many-body potential energy functions (2016) Chem. Rev., 116, pp. 7501-7528
  • Ikeshoji, T., Otani, M., Hamada, I., Okamoto, Y., Reversible redox reaction and water configuration on a positively charged platinum surface: First principles molecular dynamics simulation (2011) Phys. Chem. Chem. Phys., 13, pp. 20223-20227
  • Rossmeisl, J., Nørskov, J.K., Taylor, C.D., Janik, M.J., Neurock, M., Calculated phase diagrams for the electrochemical oxidation and reduction of water over Pt(111) (2006) J. Phys. Chem. B, 110, pp. 21833-21839

Citas:

---------- APA ----------
Videla, P.E., Ansourian, L. & Laria, D. (2016) . Hydrogen bond dynamics at water/Pt interfaces. Journal of Physical Chemistry C, 120(48), 27276-27284.
http://dx.doi.org/10.1021/acs.jpcc.6b07504
---------- CHICAGO ----------
Videla, P.E., Ansourian, L., Laria, D. "Hydrogen bond dynamics at water/Pt interfaces" . Journal of Physical Chemistry C 120, no. 48 (2016) : 27276-27284.
http://dx.doi.org/10.1021/acs.jpcc.6b07504
---------- MLA ----------
Videla, P.E., Ansourian, L., Laria, D. "Hydrogen bond dynamics at water/Pt interfaces" . Journal of Physical Chemistry C, vol. 120, no. 48, 2016, pp. 27276-27284.
http://dx.doi.org/10.1021/acs.jpcc.6b07504
---------- VANCOUVER ----------
Videla, P.E., Ansourian, L., Laria, D. Hydrogen bond dynamics at water/Pt interfaces. J. Phys. Chem. C. 2016;120(48):27276-27284.
http://dx.doi.org/10.1021/acs.jpcc.6b07504