Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We have performed extensive molecular dynamics simulations of nanoindentation of an ice slab with model atomic force microscopy (AFM) tips. We found the presence of a quasi-liquid layer between the tip and the ice for all explored indentation depths. For the smallest tip studied (R = 0.55 nm), the force versus indentation depth curves present peaks related to the melting of distinct monolayers of ice, and we were able to calculate the work (free energy) associated with it. For a larger tip (R = 1.80 nm) having a size not commensurate with the average monolayer thickness, we did not find a clear structure in force curves. This work can help guide the interpretation of experimental AFM indentation of ice and other crystalline solids. More specifically, it provides guidelines for tip sizes where layer-by-layer melting can be achieved and for the order of magnitude of forces that need to be detected. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips
Autor:Gelman Constantin, J.; Carignano, M.A.; Corti, H.R.; Szleifer, I.
Filiación:Departamento de Física de la Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), San Martín, Buenos Aires B1650KNA, Argentina
Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Ciudad UniversitariaBuenos Aires C1428EGA, Argentina
Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 5825Doha, Qatar
Department of Biomedical Engineering, Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
Palabras clave:Atomic force microscopy; Free energy; Melting; Molecular dynamics; Monolayers; Atomic force microscopy tips; Crystalline solids; Force Curve; Indentation depth; Layer by layer; Molecular dynamics simulations; Monolayer thickness; Quasiliquid layers; Ice
Año:2015
Volumen:119
Número:48
Página de inicio:27118
Página de fin:27124
DOI: http://dx.doi.org/10.1021/acs.jpcc.5b10230
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v119_n48_p27118_GelmanConstantin

Referencias:

  • Molina, M.J., Zhang, R., Wooldridge, P.J., McMahon, J.R., Kim, J.E., Chang, H.Y., Beyer, K.D., Physical chemistry of the H2SO4/HNO3/H2O system: Implications for polar stratospheric clouds (1993) Science, 261, pp. 1418-1416
  • Bartels-Rausch, T., Jacobi, H.-W., Kahan, T.F., Thomas, J.L., Thomson, E.S., Abbatt, J.P.D., Ammann, M., Boxe, C., A review of air/ice chemical and physical interactions (AICI): Liquids, quasi-liquids, and solids in snow (2014) Atmos. Chem. Phys., 14, pp. 1587-1633
  • Dash, J.G., Rempel, A.W., Wettlaufer, J.S., The physics of premelted ice and its geophysical consequences (2006) Rev. Mod. Phys., 78, pp. 695-741
  • Faraday Xxiv, M., On regelation, and on the conservation of force (1859) Philos. Mag. Series 4, 17, pp. 162-169
  • Petrenko, V.F., Study of the Surface of Ice, Ice/Solid and Ice/Liquid Interfaces with Scanning Force Microscopy (1997) J. Phys. Chem. B, 101, pp. 6276-6281
  • Döppenschmidt, A., Butt, H.-J., Measuring the Thickness of the Liquid-like Layer on Ice Surfaces with Atomic Force Microscopy (2000) Langmuir, 16, pp. 6709-6714
  • Butt, H.-J., Döppenschmidt, A., Hüttl, G., Müller, E., Vinogradova, O.I., Analysis of plastic deformation in atomic force microscopy: Application to ice (2000) J. Chem. Phys., 113, pp. 1194-1203
  • Pittenger, B., Fain, S.C., Cochran, M.J., Donev, J.M.K., Robertson, B.E., Szuchmacher, A., Overney, R.M., Premelting at ice-solid interfaces studied via velocity-dependent indentation with force microscope tips (2001) Phys. Rev. B: Condens. Matter Mater. Phys., 63, p. 134102
  • Goertz, M., Zhu, X.-Y., Houston, J., Exploring the liquid-like layer on the ice surface (2009) Langmuir, 25, pp. 6905-6908
  • Ikeda-Fukazawa, T., Kawamura, K., Molecular-dynamics studies of surface of ice Ih (2004) J. Chem. Phys., 120, pp. 1395-1401
  • Carignano, M., Shepson, P., Szleifer, L., Molecular dynamics simulations of ice growth from supercooled water (2005) Mol. Phys., 103, pp. 2957-2967
  • Conde, M.M., Vega, C., Patrykiejew, A., The thickness of a liquid layer on the free surface of ice as obtained from computer simulation (2008) J. Chem. Phys., 129, p. 014702
  • Limmer, D., Chandler, D., Premelting, fluctuations and coarse-graining of water-ice interfaces (2014) J. Chem. Phys., 141, p. 18C505
  • Li, Y., Somorjai, G.A., Surface Premelting of Ice (2007) J. Phys. Chem. C, 111, pp. 9631-9637
  • Bonner, T., Baratoff, A., Molecular dynamics study of scanning force microscopy on self-assembled monolayers (1997) Surf. Sci., 377-379, pp. 1082-1086
  • Buldum, A., Ciraci, S., Fong, C.Y., Nelson, J.S., Interpretation of long-range interatomic force (1999) Phys. Rev. B: Condens. Matter Mater. Phys., 59, pp. 5120-5125
  • Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S., Simulations of Nanotribology with Realistic Probe Tip Models (2008) Langmuir, 24, pp. 1240-1246
  • Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation (2008) J. Chem. Theory Comput., 4, pp. 435-447
  • Rick, S.W., A reoptimization of the five-site water potential (TIP5P) for use with Ewald sums (2004) J. Chem. Phys., 120, pp. 6085-6093
  • Pereyra, R.G., Szleifer, I., Carignano, M.A., Temperature dependence of ice critical nucleus size (2011) J. Chem. Phys., 135, p. 034508
  • Pereyra, R.G., Di Lorenzo, A.J.B., Malaspina, D.C., Carignano, M.A., On the relation between hydrogen bonds, tetrahedral order and molecular mobility in model water (2012) Chem. Phys. Lett., 538, pp. 35-38
  • Picasso, G.C., Malaspina, D.C., Carignano, M.A., Szleifer, I., Cooperative dynamic and diffusion behavior above and below the dynamical crossover of supercooled water (2013) J. Chem. Phys., 139, p. 044509
  • Malaspina, D.C., Di Lorenzo, A.J.B., Pereyra, R.G., Szleifer, I., Carignano, M.A., The water supercooled regime as described by four common water models (2013) J. Chem. Phys., 139, p. 024506
  • Garcia Fernandez, R., Abascal, J.L.F., Vega, C., The melting point of ice Ih for common water models calculated from direct coexistence of the solid-liquid interface (2006) J. Chem. Phys., 124, p. 144506
  • Vega, C., Abascal, J.L.F., Relation between the melting temperature and the temperature of maximum density for the most common models of water (2005) J. Chem. Phys., 123, p. 144504
  • Razul, M.S.G., Kusalik, P.G., Crystal growth investigations ofice/water interfaces from molecular dynamics simulations: Profile functions andaverage properties (2011) J. Chem. Phys., 134, p. 014710
  • English, N.J., Massively parallel molecular-dynamics simulation of ice crystallisation and melting: The roles of system size, ensemble, and electrostatics (2014) J. Chem. Phys., 141, p. 234501
  • Bluhm, H., Inoue, T., Salmeron, M., Friction of ice measured usinglateral force microscopy (2000) Phys. Rev. B: Condens. Matter Mater. Phys., 61, pp. 7760-7765
  • Hayward, J.A., Reimers, J.R., Unit cells for the simulation of hexagonal ice (1997) J. Chem. Phys., 106, pp. 1518-1529
  • Szlufarska, I., Chandross, M., Carpick, R.W., Recent advances in single-asperity nanotribology (2008) J. Phys. D: Appl. Phys., 41, p. 123001
  • Chau, P.-L., Hardwick, A.J., A new order parameter for tetrahedral configurations (1998) Mol. Phys., 93, pp. 511-518
  • Errington, J.R., Debenedetti, P.G., Relationship between structural order and the anomalies of liquid water (2001) Nature, 409, pp. 318-321
  • Beaglehole, D., Nason, D., Transition layer on the surface on ice (1980) Surf. Sci., 96, pp. 357-363
  • Furukawa, Y., Yamamoto, M., Kuroda, T., Ellipsometric study of the transition layer on the surface of an ice crystal (1987) J. Cryst. Growth, 82, pp. 665-677
  • Bluhm, H., Salmeron, M., Growth of nanometer thin ice films from water vapor studied using scanning polarization force microscopy (1999) J. Chem. Phys., 111, p. 6947
  • Dhinojwala, A., Granick, S., Relaxation Time of Confined Aqueous Films under Shear (1997) J. Am. Chem. Soc., 119, pp. 241-242
  • Flyvbjerg, H., Petersen, H.G., Error estimates on averages of correlated data (1989) J. Chem. Phys., 91, p. 461
  • Ketcham, W.M., Hobbs, P.V., An experimental determination of the surface energies of ice (1969) Philos. Mag., 19, pp. 1161-1173
  • Lied, A., Dosch, H., Bilgram, J.H., Surface melting of ice Ih single crystals revealed by glancing angle X-ray scattering (1994) Phys. Rev. Lett., 72, pp. 3554-3557

Citas:

---------- APA ----------
Gelman Constantin, J., Carignano, M.A., Corti, H.R. & Szleifer, I. (2015) . Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips. Journal of Physical Chemistry C, 119(48), 27118-27124.
http://dx.doi.org/10.1021/acs.jpcc.5b10230
---------- CHICAGO ----------
Gelman Constantin, J., Carignano, M.A., Corti, H.R., Szleifer, I. "Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips" . Journal of Physical Chemistry C 119, no. 48 (2015) : 27118-27124.
http://dx.doi.org/10.1021/acs.jpcc.5b10230
---------- MLA ----------
Gelman Constantin, J., Carignano, M.A., Corti, H.R., Szleifer, I. "Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips" . Journal of Physical Chemistry C, vol. 119, no. 48, 2015, pp. 27118-27124.
http://dx.doi.org/10.1021/acs.jpcc.5b10230
---------- VANCOUVER ----------
Gelman Constantin, J., Carignano, M.A., Corti, H.R., Szleifer, I. Molecular Dynamics Simulation of Ice Indentation by Model Atomic Force Microscopy Tips. J. Phys. Chem. C. 2015;119(48):27118-27124.
http://dx.doi.org/10.1021/acs.jpcc.5b10230