Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dielectric properties of elastomer composites formed by dispersions of bismuth ferrite (BiFeO3) multiferroic filler particles in styrene-butadiene rubber (SBR) were studied. The SBR/BiFeO3 films (10-100 μm) were prepared in the presence of electric (E) or magnetic fields (H), showing remarkable characteristics in comparison with systems obtained in its absence. The dispersed multiferroic fillers form clusters of much smaller size when prepared under E or H. The dielectric constant, ε (measured up to 1 MHz), increases with BiFeO3 concentration until reaching saturation. The rise of ε was obtained at concentrations much lower for samples prepared in the presence of E or H than in its absence. Saturation is assigned to connectivity between filler clusters at the largest concentrations, increasing leakage currents and limiting the dielectric behavior. The whole dependence of ε with BiFeO3 concentration was described using a proposed model. The dc resistivities, ρ, increase with BiFeO3 concentration but remain high (ρ ≈ 10 Gω·cm), allowing using the films as capacitors with filter action between 100 kHz and 7 MHz. The films prepared in the presence of H present strong dependence of the ferroelectric response with magnetic fields applied after preparation; that is, electromagnetic coupling was observed in those samples. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:SBR/BiFeO3 Elastomer Capacitor Films Prepared under Magnetic and Electric Fields Displaying Magnetoelectric Coupling
Autor:Saleh Medina, L.M.; Jorge, G.A.; Rubi, D.; D'Accorso, N.; Negri, R.M.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Investigación en Hidratos de Carbono (CIHIDECAR, CONICET-UBA), Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires, Argentina
Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía, Atómica, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Campus Miguelete, San Martín, Buenos Aires, Argentina
Palabras clave:Capacitors; Dielectric properties; Dielectric properties of solids; Elastomers; Electric fields; Electromagnetic coupling; Ferroelectric films; Fillers; Leakage currents; Magnetic fields; Magnetism; Rubber; Styrene; Bismuth ferrites; Dielectric behavior; Elastomer composites; Ferroelectric response; Magnetic and electric fields; Magnetoelectric couplings; Strong dependences; Styrene butadiene rubber; Film preparation
Año:2015
Volumen:119
Número:41
Página de inicio:23319
Página de fin:23328
DOI: http://dx.doi.org/10.1021/acs.jpcc.5b06056
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v119_n41_p23319_SalehMedina

Referencias:

  • Høyer, H., Knaapila, M., Kjelstrup-Hansen, J., Helgesen, G., Microelectromechanical Strain and Pressure Sensors Based on Electric Field Aligned Carbon Cone and Carbon Black Particles in a Silicone Elastomer Matrix (2012) J. Appl. Phys., 112, p. 094324
  • Ausanio, G., Iannotti, V., Ricciardi, E., Lanotte, L., Lanotte, L., Magneto-Piezoresistance in Magnetorheological Elastomers for Magnetic Induction Gradient or Position Sensors (2014) Sens. Actuators, A, 205, pp. 235-239
  • Mietta, J.L., Jorge, G., Perez, O.E., Maeder, T., Negri, R.M., Superparamagnetic Anisotropic Elastomer Connectors Exhibiting Reversible Magneto-Piezoresistivity (2013) Sens. Actuators, A, 192, pp. 34-41
  • Vacca, P., Nenna, G., Miscioscia, R., Palumbo, D., Minarini, C., Sala, D.D., Patterned Organic and Inorganic Composites for Electronic Applications (2009) J. Phys. Chem. C, 113, pp. 5777-5783
  • Kohlmeyer, R.R., Javadi, A., Pradhan, B., Pilla, S., Setyowati, K., Chen, J., Gong, S., Electrical and Dielectric Properties of Hydroxylated Carbon Nanotube-Elastomer Composites (2009) J. Phys. Chem. C, 113, pp. 17626-17629
  • Park, S., Vosguerichian, M., Bao, Z., A Review of Fabrication and Applications of Carbon Nanotube Film-Based Flexible Electronics (2013) Nanoscale, 5, pp. 1727-1752
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Negri, R.M., Anisotropic Magnetoresistance and Piezoresistivity in Structured Fe3O4-Silver Particles in PDMS Elastomers at Room Temperature (2012) Langmuir, 28, pp. 6985-6996
  • Mietta, J.L., Jorge, G., Martín Negri, R., A Flexible Strain Gauge Exhibiting Reversible Piezoresistivity Based on an Anisotropic Magnetorheological Polymer (2014) Smart Mater. Struct., 23, p. 085026
  • Ruiz, M.M., Claudia Marchi, M., Perez, O.E., Jorge, G.E., Fascio, M., D'Accorso, N., Martín Negri, R., Structured Elastomeric Submillimeter Films Displaying Magneto and Piezo Resistivity (2015) J. Polym. Sci., Part B: Polym. Phys., 53, pp. 574-586
  • Lekha, C., Sudarsanan, V., Pookat, G., Spintronic Devices Based on Multiferroics, A Review of Patents (2014) Recent Pat. Mater. Sci., 7, pp. 103-108
  • Mandal, B.P., Vasundhara, K., Abdelhamid, E., Lawes, G., Salunke, H.G., Tyagi, A.K., Improvement of Magnetodielectric Coupling by Surface Functionalization of Nickel Nanoparticles in Ni and Polyvinylidene Fluoride Nanohybrids (2014) J. Phys. Chem. C, 118, pp. 20819-20825
  • Qin, W., Jasion, D., Chen, X., Wuttig, M., Ren, S., Charge-Transfer Magnetoelectrics of Polymeric Multiferroics (2014) ACS Nano, 8, pp. 3671-3677
  • Bhadra, D., Masud, M.G., Sarkar, S., Sannigrahi, J., De, S.K., Chaudhuri, B.K., Synthesis of PVDF/BiFeO3 Nanocomposite and Observation of Enhanced Electrical Conductivity and Low-Loss Dielectric Permittivity at Percolation Threshold (2012) J. Polym. Sci., Part B: Polym. Phys., 50, pp. 572-579
  • Tamboli, M.S., Palei, P.K., Patil, S.S., Kulkarni, M.V., Maldar, N.N., Kale, B.B., Polymethyl Methacrylate (PMMA)-Bismuth Ferrite (BFO) Nanocomposite: Low Loss and High Dielectric Constant Materials with Perceptible Magnetic Properties (2014) Dalton Trans., 43, pp. 13232-13241
  • Ahlawat, A., Satapathy, S., Bhartiya, S., Singh, M.K., Choudhary, R.J., Gupta, P.K., BiFeO3/poly(methyl methacrylate) Nanocomposite Films: A Study on Magnetic and Dielectric Properties (2014) Appl. Phys. Lett., 104, p. 042902
  • Catalan, G., Scott, J.F., Physics and Applications of Bismuth Ferrite (2009) Adv. Mater., 21, pp. 2463-2485
  • Saleh Medina, L.M., Jorge, G.A., Negri, R.M., Structural, Dielectric and Magnetic Properties of Bi1-xYxFeO3 Obtained by Acid-Base Co-Precipitation (2014) J. Alloys Compd., 592, pp. 306-312
  • De Falco, A., Lamanna, M., Goyanes, S., D'Accorso, N.B., Fascio, M.L., Thermomechanical Behavior of SBR Reinforced with Nanotubes Functionalized with Polyvinylpyridine (2012) Phys. B, 407, pp. 3175-3177
  • Cui, Y.F., Zhao, Y.G., Luo, L.B., Yang, J.J., Chang, H., Zhu, M.H., Xie, D., Ren, T.L., Dielectric, Magnetic, and Magnetoelectric Properties of la and Ti Codoped BiFeO3 (2010) Appl. Phys. Lett., 97, p. 222904
  • Chen, X.-Z., Yang, R.-L., Zhou, J.-P., Chen, X.-M., Jiang, Q., Liu, P., Dielectric and Magnetic Properties of Multiferroic BiFeO3 Ceramics Sintered with the Powders Prepared by Hydrothermal Method (2013) Solid State Sci., 19, pp. 117-121
  • Song, G.L., Zhang, H.X., Wang, T.X., Yang, H., Chang, F.G., Effect of Sm, Co Codoping on the Dielectric and Magnetoelectric Properties of BiFeO3 Polycrystalline Ceramics (2012) J. Magn. Magn. Mater., 324, pp. 2121-2126
  • Kumar, P., Kar, M., Effect of Structural Transition on Magnetic and Dielectric Properties of la and Mn Co-Substituted BiFeO3 Ceramics (2014) Mater. Chem. Phys., 148, pp. 968-977
  • Dang, Y., Wang, Y., Deng, Y., Li, M., Zhang, Y., Zhang, Z., Enhanced Dielectric Properties of Polypropylene Based Composite Using Bi2S3 Nanorod Filler (2011) Prog. Nat. Sci., 21, pp. 216-220
  • Pecharromán, C., Esteban-Betegón, F., Bartolomé, J.F., López-Esteban, S., Moya, J.S., New Percolative BaTiO3-Ni Composites with a High and Frequency-Independent Dielectric Constant (εr ≈ 80000) (2001) Adv. Mater., 13, pp. 1541-1544
  • Huang, C., Zhang, Q.M., DeBotton, G., Bhattacharya, K., All-Organic Dielectric-Percolative Three-Component Composite Materials with High Electromechanical Response (2004) Appl. Phys. Lett., 84, pp. 4391-4393
  • Huang, C., Zhang, Q.M., Li, J.Y., Rabeony, M., Colossal Dielectric and Electromechanical Responses in Self-Assembled Polymeric Nanocomposites (2005) Appl. Phys. Lett., 87, p. 182901
  • Patil, S.K., Koledintseva, M., Schwartz, R.W., Huebner, W., Prediction of Effective Permittivity of Diphasic Dielectrics Using an Equivalent Capacitance Model (2008) J. Appl. Phys., 104, p. 074108
  • Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H.J., Zur Loye, H.-C., Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage (2009) Materials, 2, pp. 1697-1733
  • Wu, Y., Zhao, X., Li, F., Fan, Z., Evaluation of Mixing Rules for Dielectric Constants of Composite Dielectrics by MC-FEM Calculation on 3D Cubic Lattice (2003) J. Electroceram., 11, pp. 227-239
  • Karásek, L., Meissner, B., Asai, S., Sumita, M., Percolation Concept: Polymer-Filler Gel Formation, Electrical Conductivity and Dynamic Electrical Properties of Carbon-Black-Filled Rubbers (1996) Polym. J., 28, pp. 121-126
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Perez, O., A Model for the Dependence of the Electrical Conductance with the Applied Stress in Insulating-Conducting Composites (2010) J. Appl. Phys., 107, p. 113703
  • Martí, X., Ferrer, P., Herrero-Albillos, J., Narvaez, J., Holy, V., Barrett, N., Alexe, M., Catalan, G., Skin Layer of BiFeO3 Single Crystals (2011) Phys. Rev. Lett., 106, p. 236101
  • Gunasekaran, S., Natarajan, R., Kala, A., Jagannathan, R., Dielectric Studies of Some Rubber Materials at Microwave Frequencies (2008) Indian J. Pure Appl. Phys., 46, pp. 733-737
  • Xing, W., Ma, Y., Ma, Z., Bai, Y., Chen, J., Zhao, S., Improved Ferroelectric and Leakage Current Properties of Er-Doped BiFeO3 Thin Films Derived from Structural Transformation (2014) Smart Mater. Struct., 23, p. 085030
  • Li, Y.-H., Chen, F., Gao, G.-Y., Xu, H.-R., Wu, W., Ferroelectric, Dielectric and Leakage Current Properties of Epitaxial (K,Na)NbO3-LiTaO3-CaZrO3 Thin Films (2015) J. Electroceram., pp. 1-6
  • Yan, H., Inam, F., Viola, G., Ning, H., Zhang, H., Jiang, Q., Zeng, T., Reece, M.J., The Contribution of Electrical Conductivity, Dielectric Permittivity and Domain Switching in Ferroelectric Hysteresis Loops (2011) J. Adv. Dielectr., 1, pp. 107-118
  • Fina, I., Fàbrega, L., Langenberg, E., Martí, X., Sánchez, F., Varela, M., Fontcuberta, J., Nonferroelectric Contributions to the Hysteresis Cycles in Manganite Thin Films: A Comparative Study of Measurement Techniques (2011) J. Appl. Phys., 109, p. 074105
  • Sadhana, K., Ramana Murthy, S., Jie, S., Xie, Y., Liu, Y., Zhan, Q., Li, R.-W., Magnetic Field Induced Polarization and Magnetoelectric Effect of Ba0.8Ca0.2TiO3-Ni0.2Cu0.3Zn0.5Fe2O4 Nanomultiferroic (2013) J. Appl. Phys., 113, p. 17C731
  • Yao, Z., Xu, C., Liu, H., Hao, H., Cao, M., Wang, Z., Song, Z., Ullah, A., Greatly Reduced Leakage Current and Defect Mechanism in Atmosphere Sintered BiFeO3-BaTiO3 High Temperature Piezoceramics (2014) J. Mater. Sci.: Mater. Electron., 25, pp. 4975-4982
  • Costa, L.V., Ranieri, M.G., Cilense, M., Longo, E., Simoes, Z., Evidence of Magnetoelectric Coupling on Calcium Doped Bismuth Ferrite Thin Films Grown by Chemical Solution Deposition (2014) J. Appl. Phys., 115, p. 17D910
  • Rojac, T., Kosec, M., Budic, B., Setter, N., Damjanovic, D., Strong Ferroelectric Domain-Wall Pinning in BiFeO3 Ceramics (2010) J. Appl. Phys., 108, p. 074107
  • Yu, B., Li, M., Wang, J., Pei, L., Guo, D., Zhao, X., Enhanced Electrical Properties in Multiferroic BiFeO3 Ceramics Co-Doped by La3+ and V5+ (2008) J. Phys. D: Appl. Phys., 41, p. 185401
  • Chen, F., Zhang, Q.F., Li, J.H., Qi, Y.J., Lu, C.J., Chen, X.B., Ren, X.M., Zhao, Y., Sol-Gel Derived Multiferroic BiFeO3 Ceramics with Large Polarization and Weak Ferromagnetism (2006) Appl. Phys. Lett., 89, p. 092910
  • Zhang, S.T., Lu, M.H., Wu, D., Chen, Y.F., Ming, N.B., Larger Polarization and Weak Ferromagnetism in Quenched BiFeO3 Ceramics with a Distorted Rhombohedral Crystal Structure (2005) Appl. Phys. Lett., 87, p. 262907
  • Das, S.R., Choudhary, R.N.P., Bhattacharya, P., Katiyar, R.S., Dutta, P., Manivannan, A., Seehra, M.S., Structural and Multiferroic Properties of La-Modified BiFeO3 Ceramics (2007) J. Appl. Phys., 101, p. 034104
  • Wang, Y., Zhou, L., Zhang, M., Chen, X., Liu, J.-M., Liu, Z., Room-Temperature Saturated Ferroelectric Polarization in BiFeO3 Ceramics Synthesized by Rapid Liquid Phase Sintering (2004) Appl. Phys. Lett., 84, pp. 1731-1733
  • Arya, G.S., Negi, N.S., Effect of in and Mn Co-Doping on Structural, Magnetic and Dielectric Properties of BiFeO3 Nanoparticles (2013) J. Phys. D: Appl. Phys., 46, p. 095004
  • Ramana, E.V., Mahajan, A., Graça, M.P.F., Srinivas, A., Valente, M.A., Ferroelectric and Magnetic Properties of Magnetoelectric (Na0.5Bi0.5)TiO3-BiFeO3 Synthesized by Acetic Acid Assisted Sol-gel Method (2014) J. Eur. Ceram. Soc., 34, pp. 4201-4211
  • Palkar, V.R., Kundaliya, D.C., Malik, S.K., Bhattacharya, S., Magnetoelectricity at Room Temperature in the Bi0.9-xTbxLa0.1FeO3 System (2004) Phys. Rev. B: Condens. Matter Mater. Phys., 69, p. 212102
  • Caicedo, J.M., Zapata, J.A., Gómez, M.E., Prieto, P., Magnetoelectric Coefficient in BiFeO3 Compounds (2008) J. Appl. Phys., 103, p. 07E306

Citas:

---------- APA ----------
Saleh Medina, L.M., Jorge, G.A., Rubi, D., D'Accorso, N. & Negri, R.M. (2015) . SBR/BiFeO3 Elastomer Capacitor Films Prepared under Magnetic and Electric Fields Displaying Magnetoelectric Coupling. Journal of Physical Chemistry C, 119(41), 23319-23328.
http://dx.doi.org/10.1021/acs.jpcc.5b06056
---------- CHICAGO ----------
Saleh Medina, L.M., Jorge, G.A., Rubi, D., D'Accorso, N., Negri, R.M. "SBR/BiFeO3 Elastomer Capacitor Films Prepared under Magnetic and Electric Fields Displaying Magnetoelectric Coupling" . Journal of Physical Chemistry C 119, no. 41 (2015) : 23319-23328.
http://dx.doi.org/10.1021/acs.jpcc.5b06056
---------- MLA ----------
Saleh Medina, L.M., Jorge, G.A., Rubi, D., D'Accorso, N., Negri, R.M. "SBR/BiFeO3 Elastomer Capacitor Films Prepared under Magnetic and Electric Fields Displaying Magnetoelectric Coupling" . Journal of Physical Chemistry C, vol. 119, no. 41, 2015, pp. 23319-23328.
http://dx.doi.org/10.1021/acs.jpcc.5b06056
---------- VANCOUVER ----------
Saleh Medina, L.M., Jorge, G.A., Rubi, D., D'Accorso, N., Negri, R.M. SBR/BiFeO3 Elastomer Capacitor Films Prepared under Magnetic and Electric Fields Displaying Magnetoelectric Coupling. J. Phys. Chem. C. 2015;119(41):23319-23328.
http://dx.doi.org/10.1021/acs.jpcc.5b06056