Artículo

Muñetón Arboleda, D.; Santillán, J.M.J.; Mendoza Herrera, L.J.; Van Raap, M.B.F.; Mendoza Zélis, P.; Muraca, D.; Schinca, D.C.; Scaffardi, L.B. "Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing" (2015) Journal of Physical Chemistry C. 119(23):13184-13193
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Synthesis of nickel (Ni) nanoparticles (NPs) suspensions was performed using a 120 fs (femtosecond) pulse laser to ablate a Ni solid target in n-heptane and water. Analysis of structure, configuration, and sizing was carried out using different independent techniques, such as optical extinction spectroscopy (OES), atomic force microscopy (AFM), transmission electron microscopy (TEM), and electron diffraction (ED), which yield interrelated information. AFM microscopy allows determining the spherical shape and size distribution of the NPs in the obtained colloids, while TEM provides knowledge about shape, structure, and size distribution. ED allows identification of the different metal and metal oxide compositions as well as their crystallographic phase. On the other hand, OES gives information related to size distribution, structure, configuration, and composition. Interpretation of these spectra is based on Mie theory, which, in turn, depends on Ni dielectric function. For NP radii smaller than 3 nm, size-dependent free and bound electron contributions to the dielectric function must be considered. To account for the full size span, complete Mie expansion was used for optical extinction cross-section calculations. A theoretical analysis of the dependence of plasmon resonance of bare core and core-shell Ni NPs with core size and shell thickness provides insight about their spectroscopic features. For n-heptane, species like bare core Ni and hollow Ni NPs are found in the colloid, the latter being reported for the first time in this work. Instead, for water, the colloid contains hollow nickel NPs and nickel oxide in different core-shell configurations: Ni-NiO and NiO-Ni, the latter also being reported for the first time in this paper. In both cases, the size distribution agrees with that derived from TEM and AFM analysis. The formation of the oxide species is discussed in terms of oxidation-reduction processes during ablation. Possible mechanisms for the formation of hollow species are proposed. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing
Autor:Muñetón Arboleda, D.; Santillán, J.M.J.; Mendoza Herrera, L.J.; Van Raap, M.B.F.; Mendoza Zélis, P.; Muraca, D.; Schinca, D.C.; Scaffardi, L.B.
Filiación:Centro de Investigaciones Ópticas (CIOp), CONICET la Plata CIC, Camino Centenario y 506, Gonnet, La Plata, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca, Av. Belgrano 300, San Fernando del Valle de Catamarca, Catamarca, Argentina
Instituto de Física la Plata (IFLP), CONICET, UNLP, Calle 49 y 115, La Plata, Buenos Aires, Argentina
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Calle 49 y 115, La Plata, Buenos Aires, Argentina
Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de la Plata, Calle 115 y 49, La Plata, Buenos Aires, Argentina
Instituto de Física Gleb Wataghin (IFGW), Universidade Estadual de Campinas, Cidade Universitária Zeferino Vaz Barão Geraldo, Rua Sérgio Buarque de Holanda 777, Campinas, São Paulo, Brazil
Palabras clave:Ablation; Atomic force microscopy; Colloids; Heptane; Laser ablation; Light absorption; Light extinction; Metal analysis; Metals; Nanoparticles; Nickel oxide; Shells (structures); Size distribution; Spectroscopic analysis; Suspensions (fluids); Synthesis (chemical); Transmission electron microscopy; Crystallographic phase; Dielectric functions; Femtosecond laser ablation in liquid; Optical extinction; Optical extinction spectroscopy; Oxidation reduction; Possible mechanisms; Spectroscopic features; Nickel
Año:2015
Volumen:119
Número:23
Página de inicio:13184
Página de fin:13193
DOI: http://dx.doi.org/10.1021/acs.jpcc.5b03124
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v119_n23_p13184_MunetonArboleda

Referencias:

  • Bönnemann, H., Richards, R.M., Nanoscopic Metal Particles - Synthetic Methods and Potential Applications (2001) Eur. J. Inorg. Chem., 2001, pp. 2455-2480
  • Chen, C.C., Herhold, A.B., Johnson, C.S., Alivisatos, A.P., Size Dependence of Structural Metastability in Semiconductor Nanocrystals (1997) Science, 276, pp. 398-401
  • Puntes, V.F., Krishnan, K.M., Alivisatos, A.P., Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt (2001) Science, 291, pp. 2115-2117
  • Andrade, A.L., Valente, M.A., Ferreira, J.M.F., Fabris, J.D., Preparation of Size-Controlled Nanoparticles of Magnetite (2012) J. Magn. Magn. Mater., 324, pp. 1753-1757
  • Hou, Y., Gao, S., Monodisperse Nickel Nanoparticles Prepared from a Monosurfactant System and Their Magnetic Properties (2003) J. Mater. Chem., 13, pp. 1510-1512
  • Sun, S., Murray, C.B., Weller, D., Folks, L., Moser, A., Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices (2000) Science, 287, pp. 1989-1992
  • Beecroft, L.L., Ober, C.K., Nanocomposite Materials for Optical Applications (1997) Chem. Mater., 9, pp. 1302-1317
  • Park, J., Kang, E., Son, S.U., Park, H.M., Lee, M.K., Kim, J., Kim, K.W., Bae, C., Monodisperse Nanoparticles of Ni and NiO: Synthesis, Characterization, Self-Assembled Superlattices, and Catalytic Applications in the Suzuki Coupling Reaction (2005) Adv. Mater., 17, pp. 429-434
  • Xu, R., Xie, T., Zhao, Y., Li, Y., Quasi-Homogeneous Catalytic Hydrogenation over Monodisperse Nickel and Cobalt Nanoparticles (2007) Nanotechnology, 18, pp. 055602-055605
  • Bai, L., Yuan, F., Tang, Q., Synthesis of Nickel Nanoparticles with Uniform Size via a Modified Hydrazine Reduction Route (2008) Mater. Lett., 62, pp. 2267-2270
  • Wessells, C.D., Peddada, S.V., Huggins, R.A., Cui, Y., Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries (2011) Nano Lett., 11, pp. 5421-5425
  • Couto, G.G., Klein, J.J., Schreiner, W.H., Mosca, D.H., De Oliveira, A.J.A., Zarbin, A.J.G., Nickel Nanoparticles Obtained by a Modified Polyol Process: Synthesis, Characterization, and Magnetic Properties (2007) J. Colloid Interface Sci., 311, pp. 461-468
  • Ramírez-Meneses, E., Betancourt, I., Morales, F., Montiel-Palma, V., Villanueva-Alvarado, C.C., Hernández-Rojas, M.E., Superparamagnetic Nickel Nanoparticles Obtained by an Organometallic Approach (2011) J. Nanopart. Res., 13, pp. 365-374
  • Ni, X., Zhao, Q., Zheng, H., Li, B., Song, J., Zhang, D., Zhang, X., A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source (2005) Eur. J. Inorg. Chem., pp. 4788-4793
  • Cheng, J., Zhang, X., Ye, Y., Synthesis of Nickel Nanoparticles and Carbon Encapsulated Nickel Nanoparticles Supported on Carbon Nanotubes (2006) J. Solid State Chem., 179, pp. 91-95
  • Murugadoss, G., Rajesh Kumar, M., Synthesis and Optical Properties of Monodispersed Ni2+-Doped ZnS Nanoparticles (2014) Appl. Nanosci., 4, pp. 67-75
  • Rodríguez-Llamazares, S., Merchán, J., Olmedo, I., Marambio, H.P., Muñoz, J.P., Jara, P., Sturm, J.C., Yutronic, N., Ni/Ni Oxides Nanoparticles with Potential Biomedical Applications Obtained by Displacement of a Nickel-Organometallic Complex (2008) J. Nanosci. Nanotechnol., 8, pp. 3820-3827
  • Liu, B., Hu, Z., Che, Y., Chen, Y., Pan, X., Nanoparticle Generation in Ultrafast Pulsed Laser Ablation of Nickel (2007) Appl. Phys. Lett., 90, p. 044103
  • Amoruso, S., Bruzzese, R., Wang, X., Nedialkov, N.N., Atanasov, P.A., Femtosecond Laser Ablation of Nickel in Vacuum (2007) J. Phys. D: Appl. Phys., 40, pp. 331-340
  • Dudoitis, V., Ulevičius, V., Račiukaitis, G., Špirkauskaite, N., Plauškaite, K., Generation of Metal Nanoparticles by Laser Ablation (2011) Lith. J. Phys., 51, pp. 248-259
  • Jaleh, B., Torkamany, M.J., Golbedaghi, R., Noroozi, M., Habibi, S., Samavat, F., Jaberian Hamedan, V., Albeheshti, L., Preparation of Nickel Nanoparticles via Laser Ablation in Liquid and Simultaneously Spectroscopy (2012) Adv. Mater. Res., 403-408, pp. 4440-4444
  • Jung, H.J., Choi, M.Y., Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents (2014) J. Phys. Chem. C, 118, pp. 14647-14654
  • Musaev, O.R., Yan, J., Dusevich, V., Wrobel, J.M., Kruger, M.B., Ni Nanoparticles Fabricated by Laser Ablation in Water (2014) Appl. Phys. A: Mater. Sci. Process., 116, pp. 735-739
  • Bohren, C.F., Huffmanm, D.R., (1998) Absorption and Scattering of Light by Small Particles, , Wiley: New York
  • Rosensweig, R.E., Heating Magnetic Fluid with Alternating Magnetic Field (2002) J. Magn. Magn. Mater., 252, pp. 370-374
  • Goya, G.F., Fonseca, F.C., Jardim, R.F., Muccillo, R., Carreño, N.L.V., Longo, E., Leite, E.R., Magnetic Dynamics of Single Domain Ni Nanoparticles (2003) J. Appl. Phys., 93, p. 6531
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, , Springer: Berlin
  • Scaffardi, L.B., Tocho, J.O., Size Dependence of Refractive Index of Gold Nanoparticles (2006) Nanotechnology, 17, pp. 1309-1315
  • Mendoza Herrera, L.J., Muñetón Arboleda, D., Schinca, D.C., Scaffardi, L.B., Determination of Plasma Frequency, Damping Constant, and Size Distribution from the Complex Dielectric Function of Noble Metal Nanoparticles (2014) J. Appl. Phys., 116, p. 233105
  • Ordal, M.A., Bell, R.J., Alexander, Jr.R.W., Long, L.L., Querry, M.R., Optical Properties of Au, Ni, and Pb at Submillimeter Wavelengths (1987) Appl. Opt., 26, pp. 744-752
  • Rakić, A.D., Djurišic, A.B., Elazar, J.M., Majewski, M.L., Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices (1998) Appl. Opt., 37, pp. 5271-5283
  • Petrovykh, D.Y., Altmann, K.N., Hochst, H., Laubscher, M., Maat, S., Mankey, G.J., Himpse, F.J., Spin-Dependent Band Structure, Fermi Surface, and Carrier Lifetime of Permalloy (1998) Appl. Phys. Lett., 73, pp. 3459-3461
  • Khan, S.Z., Yuan, Y., Abdolvand, A., Schmidt, M., Crouse, P., Li, L., Liu, Z., Watkins, K.G., Generation and Characterization of NiO Nanoparticles by Continuous Wave Fiber Laser Ablation in Liquid (2009) J. Nanopart. Res., 11, pp. 1421-1427
  • Prodan, E., Norlander, P., Structural Tunability of the Plasmon Resonances in Metallic Nanoshells (2003) Nano Lett., 3, pp. 543-547
  • Mahmoud, S.A., Alshomer, S., Tarawnh, M.A., Structural and Optical Dispersion Characterization of Sprayed Nickel Oxide Thin Films (2011) J. Mod. Phys., 2, pp. 1178-1186
  • Desarkar, H.S., Kumbhakar, P., Mitra, A.K., One-Step Synthesis of Zn/ZnO Hollow Nanoparticles by the Laser Ablation in Liquid Technique (2013) Laser Phys. Lett., 10, p. 055903
  • Yan, Z., Bao, R., Chrisey, D.B., Excimer Laser Ablation of a Pt Target in Water: The Observation of Hollow Particles (2010) Nanotechnology, 21, p. 145609
  • Yan, Z., Bao, R., Huang, Y., Chrisey, D.B., Hollow Particles Formed on Laser-Induced Bubbles by Excimer Laser Ablation of Al in Liquid (2010) J. Phys. Chem. C, 114, pp. 11370-11374
  • Yan, Z., Bao, R., Wright, R.N., Chrisey, D.B., Hollow Nanoparticle Generation on Laser-Induced Cavitation Bubbles via Bubble Interface Pinning (2010) Appl. Phys. Lett., 97, p. 124106
  • Niu, K.Y., Yang, J., Kulinich, S.A., Sun, J., Du, X.W., Hollow Nanoparticles of Metal Oxides and Sulfides: Fast Preparation via Laser Ablation in Liquid (2010) Langmuir, 26, pp. 16652-16657
  • Santillán, J.M.J., Videla, F.A., Fernández Van Raap, M.B., Muraca, D., Scaffardi, L.B., Schinca, D.C., Influence of Size-Corrected Bound-Electron Contribution on Nanometric Silver Dielectric Function. Sizing through Optical Extinction Spectroscopy (2013) J. Phys. D: Appl. Phys., 46, p. 435301
  • Nath, A., Khare, A., Size Induced Structural Modifications in Copper Oxide Nanoparticles Synthesized via Laser Ablation in Liquids (2011) J. Appl. Phys., 110, p. 043111
  • Medford, J.A., Johnston-Peck, A.C., Tracy, J.B., Nanostructural Transformations during the Reduction of Hollow and Porous Nickel Oxide Nanoparticles (2013) Nanoscale, 5, pp. 155-159

Citas:

---------- APA ----------
Muñetón Arboleda, D., Santillán, J.M.J., Mendoza Herrera, L.J., Van Raap, M.B.F., Mendoza Zélis, P., Muraca, D., Schinca, D.C.,..., Scaffardi, L.B. (2015) . Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing. Journal of Physical Chemistry C, 119(23), 13184-13193.
http://dx.doi.org/10.1021/acs.jpcc.5b03124
---------- CHICAGO ----------
Muñetón Arboleda, D., Santillán, J.M.J., Mendoza Herrera, L.J., Van Raap, M.B.F., Mendoza Zélis, P., Muraca, D., et al. "Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing" . Journal of Physical Chemistry C 119, no. 23 (2015) : 13184-13193.
http://dx.doi.org/10.1021/acs.jpcc.5b03124
---------- MLA ----------
Muñetón Arboleda, D., Santillán, J.M.J., Mendoza Herrera, L.J., Van Raap, M.B.F., Mendoza Zélis, P., Muraca, D., et al. "Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing" . Journal of Physical Chemistry C, vol. 119, no. 23, 2015, pp. 13184-13193.
http://dx.doi.org/10.1021/acs.jpcc.5b03124
---------- VANCOUVER ----------
Muñetón Arboleda, D., Santillán, J.M.J., Mendoza Herrera, L.J., Van Raap, M.B.F., Mendoza Zélis, P., Muraca, D., et al. Synthesis of Ni Nanoparticles by Femtosecond Laser Ablation in Liquids: Structure and Sizing. J. Phys. Chem. C. 2015;119(23):13184-13193.
http://dx.doi.org/10.1021/acs.jpcc.5b03124