Artículo

Romero, J.J.; Wegmann, M.; Rodríguez, H.B.; Lillo, C.; Rubert, A.; Klein, S.; Kotler, M.L.; Kryschi, C.; Gonzalez, M.C. "Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties" (2015) Journal of Physical Chemistry C. 119(10):5739-5746
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Iron-containing silicon nanoparticles were synthesized in an attempt to understand the effect of iron on the silicon nanoparticle (SiNP) photoluminescence and singlet-oxygen generation capacity. A wet chemical oxidation procedure of the sodium silicide precursor, obtained from the thermal treatment of a mixture of sodium, silicon, and an iron(III) organic salt under anaerobic conditions, was employed. Surface-oxidized and propylamine-terminated SiNPs were characterized using high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, time-resolved and steady-state photoluminescence, and time-correlated fluorescence anisotropy. On the basis of differences in the morphology, crystal structure, density, and photoluminescence spectrum, two distinct types of SiNPs were identified in a given synthesis batch: iron-free and iron-containing SiNPs. The results show that iron is inhomogeneously incorporated in the SiNPs leading to an efficient photoluminescence quenching. Emission arrives mainly from 2 nm size iron-free SiNPs. The nanoparticles were shown to generate singlet oxygen (1O2) upon 355 nm irradiation, though they were able to quench 1O2. Analysis of cytotoxicity using MTT assay on rat glioma C6 cells showed a strong dependence on the nature of the surface groups, as 100 μg/mL of propylamine-terminated iron-containing SiNPs leads to 85% decrease in cell viability while equal amounts of surface oxidized particles induced a 35% of cell death. © 2015 American Chemical Society.

Registro:

Documento: Artículo
Título:Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties
Autor:Romero, J.J.; Wegmann, M.; Rodríguez, H.B.; Lillo, C.; Rubert, A.; Klein, S.; Kotler, M.L.; Kryschi, C.; Gonzalez, M.C.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de la Plata, Casilla de Correo 16, Sucursal 4, La Plata, 1900, Argentina
IQUIBICEN-CONICET, Departamento de Química Biológica, Universidad de Buenos Aires Buenos Aires, Argentina
Department Chemistry and Pharmacy, Physical Chemistry i and ICMM, Friedrich-Alexander University of Erlangen-Nuremberg, Egerlandstrasse 3D-91058, Germany
Palabras clave:Amines; Cell death; Crystal structure; Gas generators; High resolution transmission electron microscopy; Nanoparticles; Oxidation; Oxygen; Photoluminescence; Photoluminescence spectroscopy; Silicides; Silicon; Synthesis (chemical); X ray photoelectron spectroscopy; Anaerobic conditions; Fluorescence anisotropy; Photoluminescence quenching; Photoluminescence spectrum; Silicon nanoparticles; Singlet oxygen generation; Strong dependences; Wet chemical oxidation; Iron
Año:2015
Volumen:119
Número:10
Página de inicio:5739
Página de fin:5746
DOI: http://dx.doi.org/10.1021/acs.jpcc.5b00172
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v119_n10_p5739_Romero

Referencias:

  • Burda, C., Chen, X., Narayanan, R., El-Sayed, M.A., Chemistry and Properties of Nanocrystals of Different Shapes (2005) Chem. Rev., 105, pp. 1025-1102
  • Llansola Portolés, M.J., David Gara, P.M., Kotler, M.L., Bertolotti, S., San Román, E., Rodríguez, H.B., Gonzalez, M.C., Silicon Nanoparticle Photophysics and Singlet Oxygen generation (2010) Langmuir, 26, pp. 10953-10960
  • Liang, S., Islam, R., Smith, D.J., Bennett, P.A., O'Brien, J.R., Taylor, B., Magnetic Iron Silicide Nanowires on Si (110) (2006) Appl. Phys. Lett., 88, pp. 113111-113114
  • Erogbogbo, F., Yong, K.-T., Hu, R., Law, W.-C., Ding, H., Chang, C.-W., Prasad, P.N., Swihart, M.T., Biocompatible Magneto-fluorescent Probes: Luminescent Silicon Quantum Dots Coupled with Superparamagnetic Iron(III) Oxide (2010) ACS Nano, 4, pp. 5131-5138
  • Sato, K., Yokosuka, S., Takigami, Y., Hirakuri, K., Fujioka, K., Manome, Y., Sukegawa, H., Fukata, N., Size-Tunable Silicon/Iron Oxide Hybrid Nanoparticles with Fluorescence, Superparamagnetism, and Biocompatibility (2011) J. Am. Chem. Soc., 133, pp. 18626-18633
  • Singh, M.P., Atkins, T.M., Muthuswamy, E., Kamali, S., Tu, C., Louie, A.Y., Kauzlarich, S.M., Development of Iron-Doped Silicon Nanoparticles As Bimodal Imaging Agents (2012) ACS Nano, 6, pp. 5596-5604
  • Lakowicz, J.R., (2006) Principles of Fluorescence Spectroscopy, , 3 rd ed. Springer: Singapore
  • Wilkinson, F., Helman, W.P., Ross, A.B., Rate Constants for the Decay and Reactions of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution. An Expanded and Revised Compilation (1995) J. Phys. Chem. Ref. Data, 24, pp. 663-1021
  • Llansola Portolés, M.J., Pis Diez, R., Dell'Arciprete, M.L., Caregnato, P., Romero, J.J., Mártire, D.O., Azzaroni, O., Gonzalez, M.C., Understanding the Parameters Affecting the Photoluminescence of Silicon Nanoparticles (2012) J. Phys. Chem. C, 116, pp. 11315-11325
  • Gajdardziska, M., McClean, R.G., Schofield, M., Sommer, C.V., Kean, W.F., Discovery of Nanocrystaline Botanical Magnetite (2001) Eur. J. Mineral., 13, pp. 863-870
  • Collingwood, J.F., Chong, R.K.K., Kasama, T., Cervera-Gontard, L., Dunin-Borkowski, R.E., Perry, G., Posfaig, M., Smith, M.A., Three-Dimensional Tomographic Imaging and Characterization of Iron Compounds within Alzheimer's Plaque Core Material (2008) J. Alzheimer's Dis., 14, pp. 235-245
  • Mahtout, S., Effect of Iron Atoms on the Properties of Silicon Cage Clusters (2013) Acta Phys. Polym., A, 124, pp. 688-694
  • Mahtout, S., Belkhir, M.A., Structural, Magnetic and Electronic Properties of Fe Encapsulated by Silicon Clusters (2006) Phys. Lett. A, 360, pp. 384-389
  • Ma, L., Zhao, J., Wang, Ji., Wang, B., Wang, G., Magnetic Properties of Transition-Metal Impurities in Silicon Quantum Dots (2007) Phys. Rev. B, 75, p. 045312
  • (2012) X-ray Photoelectron Spectroscopy Database, , http://srdata.nist, NIST, Version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, gov/xps/
  • Yamashita, T., Hayes, P., Analysis of XPS Spectra of Fe2+ and Fe3+ ions in Oxide Materials (2008) Appl. Surf. Sci., 254, pp. 2441-2449
  • Claessen, R., Sing, M., Paul, M., Berner, G., Wetscherek, A., Müller, A., Drube, W., Hard X-Ray Photoelectron Spectroscopy of Oxide Hybrid and Heterostructures: A New Method for the Study of Buried Interfaces (2009) New J. Phys., 11, pp. 125007-125023
  • Biesinger, M.C., Payne, B.P., Grosvenor, A.P., Lau, L.W.M., Gerson, A.R., Smart, R.St.C., Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni (2011) Appl. Surf. Sci., 257, pp. 2717-2730
  • Ohtsu, N., Oku, M., Satoh, K., Wagatsuma, K., Dependence of Core-Level XPS Spectra on Iron Silicide Phase (2013) Appl. Surf. Sci., 264, pp. 219-224
  • Li, P., Jiang, E.Y., Bai, H.L., Fabrication of Ultrathin Epitaxial γ-Fe2O3 Films by Reactive Sputtering (2011) J. Phys. D: Appl. Phys., 44, pp. 75003-75008
  • Cumpson, P.J., Seah, M.P., Elastic Scattering Corrections in AES and XPS. II. Estimating Attenuation Lengths and Conditions Required for Their Valid Use in Overlayer/Substrate Experiments (1997) Surf. Interface Anal., 25, pp. 430-446
  • Romero, J.J., Llansola-Portolés, M.J., Dell'Arciprete, M.L., Rodríguez, H.B., Moore, A.L., Gonzalez, M.C., Photoluminescent 1-2 nm Sized Silicon Nanoparticles: A Surface-Dependent System (2013) Chem. Mater., 25, pp. 3488-3498
  • Corr, S.A., Gun'Ko, Y.K., Douvalis, A.P., Venkatesan, M., Gunning, R.D., Nellist, P.D., From Nanocrystals to Nanorods: New Iron Oxide-Silica Nanocomposites from Metallorganic Precursors (2008) J. Phys. Chem. C, 112, pp. 1008-1018
  • Lin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, , Elsevier: Amsterdam
  • Tombacz, E., Majzik, A., Horvát, Z.S., Illés, E., Magnetite in Aqueous Medium: Coating its Surface and Surface Coated with it (2006) Rom. Rep. Phys., 58, pp. 281-286
  • Lucas, I., Durand-Vidal, S., Dubois, E., Chevalet, J., Turq, P., Surface Charge Density of Maghemite Nanoparticles: Role of Electrostatics in the Proton Exchange (2007) J. Phys. Chem. C, 111, pp. 18568-18576
  • San Román, E., Gonzalez, M.C., Analysis of Spectrally Resolved Kinetic Data and Time-Resolved Spectra by Bilinear Regression (1989) J. Phys. Chem., 93, pp. 3532-3536
  • Delley, B., Steigmeier, E.F., Size Dependence of Band Gaps in Silicon Nanostructures (1995) Appl. Phys. Lett., 67, p. 2370
  • Smith, A., Yamani, Z.H., Roberts, N., Turner, J., Habbal, S.R., Granick, S., Nayfeh, M.H., Observation of Strong Direct-Like Oscillator Strength in the Photoluminescence of Si Nanoparticles (2005) Phys. Rev. B, 72, p. 205307
  • Wilkinson, F., Helman, W.P., Ross, A.B., Quantum Yields for the Photosensitized Formation of the Lowest Electronically Excited Singlet State of Molecular Oxygen in Solution (1993) J. Phys. Chem. Ref. Data, 22, pp. 113-262
  • Lillo, C.R., Romero, J.J., Llansola Portolés, M.J., Pis Diez, R., Caregnato, P., Gonzalez, M.C., Organic-Coating of 1-2 nm Size Silicon Nanoparticles: Effect on the Particle Properties (2015) Nano Res.
  • Alaimo, A., Gorojod, R.M., Beauquis, J., Muñoz, M.J., Saravia, F., Kotler, M.L., Deregulation of Mitochondria-Shaping Proteins Opa-1 and Drp-1 Plays a Decisive Role in Manganese-Induced Apoptosis (2014) PLoS One, 9, p. 91848
  • Bhattacharjee, S., De Haan, L.H., Evers, N.M., Jiang, X., Marcelis, A.T., Zuilhof, H., Rietjens, I.M., Alink, G.M., Role of Surface Charge and Oxidative Stress in Cytotoxicity of Organic Monolayer-Coated Silicon Nanoparticles Towards Macrophage NR8383 Cells (2011) Part Fibre Toxicol., 7, pp. 25-32

Citas:

---------- APA ----------
Romero, J.J., Wegmann, M., Rodríguez, H.B., Lillo, C., Rubert, A., Klein, S., Kotler, M.L.,..., Gonzalez, M.C. (2015) . Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties. Journal of Physical Chemistry C, 119(10), 5739-5746.
http://dx.doi.org/10.1021/acs.jpcc.5b00172
---------- CHICAGO ----------
Romero, J.J., Wegmann, M., Rodríguez, H.B., Lillo, C., Rubert, A., Klein, S., et al. "Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties" . Journal of Physical Chemistry C 119, no. 10 (2015) : 5739-5746.
http://dx.doi.org/10.1021/acs.jpcc.5b00172
---------- MLA ----------
Romero, J.J., Wegmann, M., Rodríguez, H.B., Lillo, C., Rubert, A., Klein, S., et al. "Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties" . Journal of Physical Chemistry C, vol. 119, no. 10, 2015, pp. 5739-5746.
http://dx.doi.org/10.1021/acs.jpcc.5b00172
---------- VANCOUVER ----------
Romero, J.J., Wegmann, M., Rodríguez, H.B., Lillo, C., Rubert, A., Klein, S., et al. Impact of iron incorporation on 2-4 nm size silicon nanoparticles properties. J. Phys. Chem. C. 2015;119(10):5739-5746.
http://dx.doi.org/10.1021/acs.jpcc.5b00172