Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ru(II) bipyridyl complexes were covalently bonded to self-assembled monolayers (SAM) on Au surfaces. Their molecular and electronic structure was studied by means of polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), photoelectron spectroscopies, scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. We found that attaching the Ru complex to the SAM does not cause great modifications to its molecular structure, which retains the alkyl chain 30 deg tilted with respect to the surface normal. Furthermore, the Ru center is located 20 Å away from the metal surface, i.e., at a sufficient distance to prevent direct electronic interaction with the substrate. Indeed the electronic structure of the Ru complex is similar to that of the free molecule with a HOMO molecular orbital mainly based on the Ru center located 2.1 eV below the Fermi edge and the LUMO molecular orbital based on the bipyridine groups located 1 eV above the Fermi level. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces
Autor:De La Llave, E.; Herrera, S.E.; Méndez De Leo, L.P.; Williams, F.J.
Filiación:Departamento de Química Inorgánica, Analítica y Química-Física, INQUIMAE-CONICET, Ciudad Universitaria, Pabellón 2, Buenos Aires, C1428EHA, Argentina
Palabras clave:Absorption spectroscopy; Density functional theory; Electronic structure; Gold compounds; Molecular orbitals; Monolayers; Photoelectron spectroscopy; Ruthenium; Ruthenium alloys; Ruthenium compounds; Scanning tunneling microscopy; Covalently bonded; Electronic interactions; Free molecules; Gold surfaces; Metal surfaces; Polarization modulation infrared reflection absorption spectroscopy; Ruthenium complexes; Surface normals; Self assembled monolayers
Año:2014
Volumen:118
Número:37
Página de inicio:21420
Página de fin:21427
DOI: http://dx.doi.org/10.1021/jp507199z
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n37_p21420_DeLaLlave

Referencias:

  • Forster, R.J., Keyes, T.E., Photonic Interfacial Supramolecular Assemblies Incorporating Transition Metals (2009) Coord. Chem. Rev., 253, pp. 1833-1853
  • Rogers, N.J., Claire, S., Harris, R.M., Farabi, S., Zikeli, G., Styles, I.B., Hodges, N.J., Pikramenou, Z., High Coating of Ru(II) Complexes on Gold Nanoparticles for Single Particle Luminescence Imaging in Cells (2014) Chem. Commun., 50, pp. 617-619
  • Kurita, R., Arai, K., Nakamoto, K., Kato, D., Niwa, O., Development of Electrogenerated Chemiluminescence-Based Enzyme Linked Immunosorbent Assay for Sub-pM Detection (2010) Anal. Chem., 82, pp. 1692-1697
  • Chu, B.W.-K., Yam, V.W.-W., Sensitive Single-Layered Oxygen-Sensing Systems: Polypyridyl Ruthenium(II) Complexes Covalently Attached or Deposited as Langmuir-Blodgett Monolayer on Glass Surfaces (2006) Langmuir, 22, p. 7437. , 10
  • Li, S., Zhong, X., Yang, H., Hu, Y., Zhang, F., Niu, Z., Hu, W., Ma, J., Noncovalent Modified Graphene Sheets with Ruthenium(II) Complexes Used as Electrochemiluminescent Materials and Photosensors (2011) Carbon, 49, pp. 4239-4245
  • Yu, Y., Zhou, M., Shen, W., Zhang, H., Cao, Q., Cui, H., Synthesis of Electrochemiluminescent Graphene Oxide Functionalized with a Ruthenium(II) Complex and its Use in the Detection of Tripropylamine (2012) Carbon, 50, pp. 2539-2545
  • Eckermann, A.M., Feld, D.J., Shaw, J.A., Meade, T.J., Electrochemistry of Redox-Active Self-Assembled Monolayers (2010) Coord. Chem. Rev., 254, pp. 1769-1802
  • Bertoncello, P., Kefalas, E.T., Pikramenou, Z., Unwin, P.R., Forster, R.J., Adsorption Dynamics and Electrochemical and Photophysical Properties of Thiolated Ruthenium 2,2′-Bipyridine Monolayers (2006) J. Phys. Chem. B, 110, pp. 10063-10069
  • Dennany, L., Oreilly, E., Forster, R.J., Electrochemiluminescent Monolayers on Metal Oxide Electrodes: Detection of Amino Acids (2006) Electrochem. Commun., 8, pp. 1588-1594
  • Yuan, Y., Li, H., Han, S., Hu, L., Parveen, S., Cai, H., Xu, G., Immobilization of Tris(1,10-phenanthroline)Ruthenium with Graphene Oxide for Electrochemiluminescent Analysis (2012) Anal. Chim. Acta, 720, pp. 38-42
  • Tao, Y., Lin, Z.-J., Chen, X.-M., Huang, X.-L., Oyama, M., Chen, X., Wang, X.-R., Functionalized Multiwall Carbon Nanotubes Combined with Bis(2,2 -bipyridine)-5-amino-1,10-phenanthroline Ruthenium(II) as an Electrochemiluminescence Sensor (2008) Sens. Actuators, B, 129, pp. 758-763
  • Chen, X.-M., Wu, G.-H., Chen, J.-M., Jiang, Y.-Q., Chen, G.-N., Oyama, M., Chen, X., Wang, X.-R., A Novel Electrochemiluminescence Sensor Based on Bis(2,2 -bipyridine)-5-amino-1,10-phenanthroline Ruthenium(II) Covalently Combined with Graphite Oxide (2010) Biosens. Bioelectron., 26, pp. 872-876
  • Yu, Y., Zhoub, M., Cui, H., Synthesis and Electrochemiluminescence of Bis(2,20-bipyridine)(5-amino-1,10-phenanthroline) Ruthenium(II)-Functionalized Gold Nanoparticles (2011) J. Mater. Chem., 21, pp. 12622-12625
  • Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Gratzel, M., Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers (2005) J. Am. Chem. Soc., 127, pp. 16835-16847
  • De Angelis, F., Fantacci, S., Selloni, A., Nazeeruddin, M.K., Gratzel, M., Time-Dependent Density Functional Theory Investigations on the Excited States of Ru(II)-Dye-Sensitized TiO2 Nanoparticles: The Role of Sensitizer Protonation (2007) J. Am. Chem. Soc., 129, pp. 14156-14157
  • Srnec, M., Chalupsky, J., Fojta, M., Zendlova, L., Havran, L., Hocek, M., Kyvala, M., Rulisek, L., Effect of Spin-Orbit Coupling on Reduction Potentials of Octahedral Ruthenium(II/III) and Osmium(II/III) Complexes (2008) J. Am. Chem. Soc., 130, pp. 10947-10954
  • Abrahamsson, M., Jager, M., Kumar, R.J., Osterman, T., Persson, P., Becker, H.C., Johansson, O., Hammarstrom, L., Bistridentate Ruthenium(II)polypyridyl-Type Complexes with Microsecond 3MLCT State Lifetimes: Sensitizers for Rod-Like Molecular Arrays (2008) J. Am. Chem. Soc., 130, pp. 15533-15542
  • Johansson, E.M.J., Odelius, M., Plogmaker, S., Gorgoi, M., Svensson, S., Siegbahn, H., Rensmo, H., Spin-Orbit Coupling and Metal-Ligand Interactions in Fe(II), Ru(II), and Os(II) Complexes (2010) J. Phys. Chem. C, 114, pp. 10314-10322
  • Gorelsky, S.I., Dodsworth, E.S., Lever, A.B.P., Vlcek, A.A., Trends in Metal-Ligand Orbital Mixing in Generic Series of Ruthenium N-donor Ligand Complexes-Effect on Electronic Spectra and Redox Properties (1998) Coord. Chem. Rev., 174, pp. 469-494
  • Vlcek, A., Zalis, S., Modeling of Charge-Transfer Transitions and Excited States in d6 Transition Metal Complexes by DFT Techniques (2007) Coord. Chem. Rev., 251, pp. 258-287
  • Sehgal, D., Vijay, K., A Method for the High Efficiency of Water-Soluble Carbodiimide-Mediated Amidation (1994) Anal. Biochem., 218, pp. 87-91
  • Ricci, A.M., Tognalli, N., De La Llave, E., Vericat, C., Mendez De Leo, L.P., Williams, F.J., Scherlis, D., Calvo, E.J., Electrochemistry of Os(2,2′bpy)2Cl PyCH2NHCOPh Tethered to Au Electrodes by S-Au and C-Au Junctions (2011) Phys. Chem. Chem. Phys., 13, pp. 5336-5345
  • Barner, B.J., Green, M.J., Saez, E.I., Corn, R.M., Polarization Modulation Fourier Transform Infrared Reflectance Measurements of Thin Films and Monolayers at Metal Surfaces Utilizing Real-Time Sampling Electronics (1991) Anal. Chem., 63, pp. 55-60
  • Green, M.J., Barner, B.J., Corn, R.M., Real-Time Sampling Electronics for Double Modulation Experiments with Fourier Transform Infrared Spectrometers (1991) Rev. Sci. Instrum., 62, pp. 1426-1430
  • Frey, B.L., Corn, R.M., Weibel, S.C., (2001) Polarization-Modulation Approaches to Reflection-Absorption Spectroscopy, 2, pp. 1042-1056. , John Wiley & Sons: New York
  • Hohenberg, P., Kohn, W., Inhomogeneous Electron Gas (1964) Phys. Rev., 136, pp. 864-B871
  • Kohn, W., Sham, L.J., Self-Consistent Equations Including Exchange and Correlation Effects (1965) Phys. Rev., 140, pp. 1133-A1138
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Dabo, I., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials (2009) J. Phys.: Condens. Matter, 21, p. 395502
  • Vanderbilt, D., Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism (1990) Phys. Rev. B, 41, pp. 7892-7895
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized Gradient Approximation Made Simple (1996) Phys. Rev. Lett., 77, pp. 3865-3868
  • Nuzzo, R.G., Dubois, L.H., Allara, D.L., Fundamental Studies of Microscopic Wetting on Organic Surfaces. 1. Formation and Structural Characterization of a Self-Consistent Series of Polyfunctional Organic Monolayers (1990) J. Am. Chem. Soc., 112, pp. 558-569
  • Lin-Vein, D., Colthup, N.B., Fateley, W.B., Grasselli, J.G., (1991) The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, , Academic Press Inc. San Diego, CA
  • De La Llave, E., Clarence, R., Schiffrin, D.J., Williams, F.J., Organization of Alkane Amines on a Gold Surface: Structure, Surface Dipole, and Electron Transfer (2014) J. Phys. Chem. C, 118, pp. 468-475
  • Vericat, C., Vela, M.E., Benitez, G., Carro, P., Salvarezza, R.C., Self-Assembled Monolayers of Thiols and Dithiols on Gold: New Challenges for a Well-Known System (2010) Chem. Soc. Rev., 39, pp. 1-30
  • Alloway, D.M., Hofmann, M., Smith, D.L., Gruhn, N.E., Graham, A.L., Colorado, R., Wysocki, V.H., Armstrong, N.R., Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV-Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols (2003) J. Phys. Chem. B, 107, pp. 11690-11699
  • Westermark, K., Rensmo, H., Lees, A.C., Vos, J.G., Siegbahn, H., Electron Spectroscopic Studies of Bis-(2,2-bipyridine)(4,4-dicarboxy-2,2-bipyridine)ruthenium(II) and Bis-(2,2-bipyridine)(4,4-dicarboxy-2,2-bipyridine)osmium(II) Adsorbed on Nanostructured TiO2 and ZnO Surfaces (2002) J. Phys. Chem. B, 106, pp. 10108-11011
  • Vericat, C., Vela, M.E., Benitez, G.A., Gago, J.A.M., Torrelles, X., Salvarezza, R.C., Surface Characterization of Sulfur and Alkanethiol Self-Assembled Monolayers on Au(111) (2006) J. Phys.: Condens. Matter, 18, pp. 867-900
  • Méndez De Leo, L.P., De La Llave, E., Scherlis, D., Williams, F.J., Molecular and Electronic Structure of Electroactive Self-Assembled Monolayers (2013) J. Chem. Phys., 138, p. 114707

Citas:

---------- APA ----------
De La Llave, E., Herrera, S.E., Méndez De Leo, L.P. & Williams, F.J. (2014) . Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces. Journal of Physical Chemistry C, 118(37), 21420-21427.
http://dx.doi.org/10.1021/jp507199z
---------- CHICAGO ----------
De La Llave, E., Herrera, S.E., Méndez De Leo, L.P., Williams, F.J. "Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces" . Journal of Physical Chemistry C 118, no. 37 (2014) : 21420-21427.
http://dx.doi.org/10.1021/jp507199z
---------- MLA ----------
De La Llave, E., Herrera, S.E., Méndez De Leo, L.P., Williams, F.J. "Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces" . Journal of Physical Chemistry C, vol. 118, no. 37, 2014, pp. 21420-21427.
http://dx.doi.org/10.1021/jp507199z
---------- VANCOUVER ----------
De La Llave, E., Herrera, S.E., Méndez De Leo, L.P., Williams, F.J. Molecular and electronic structure of self-assembled monolayers containing ruthenium(II) complexes on gold surfaces. J. Phys. Chem. C. 2014;118(37):21420-21427.
http://dx.doi.org/10.1021/jp507199z