Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this article we explore how structural parameters of composites filled with one-dimensional, electrically conducting elements (such as sticks, needles, chains, or rods) affect the percolation properties of the system. To this end, we perform Monte Carlo simulations of asymmetric two-dimensional stick systems with anisotropic alignments. We compute the percolation probability functions in the direction of preferential orientation of the percolating objects and in the orthogonal direction, as functions of the experimental structural parameters. Among these, we considered the average length of the sticks, the standard deviation of the length distribution, and the standard deviation of the angular distribution. We developed a computer algorithm capable of reproducing and verifying known theoretical results for isotropic networks and which allows us to go beyond and study anisotropic systems of experimental interest. Our research shows that the total electrical anisotropy, considered as a direct consequence of the percolation anisotropy, depends mainly on the standard deviation of the angular distribution and on the average length of the sticks. A conclusion of practical interest is that we find that there is a wide and well-defined range of values for the mentioned parameters for which it is possible to obtain reliable anisotropic percolation under relatively accessible experimental conditions when considering composites formed by dispersions of sticks, oriented in elastomeric matrices. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Numerical simulations of stick percolation: Application to the study of structured magnetorheological elastomers
Autor:Mietta, J.L.; Negri, R.M.; Tamborenea, P.I.
Filiación:Instituto de Química-Física de Materiales, Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
Departamento de Física, Instituto de Física de Buenos Aires (IFIBA), Ciudad Universitaria, Ciudad de Buenos Aires, Argentina
Palabras clave:Algorithms; Anisotropy; Intelligent systems; Monte Carlo methods; One dimensional; Orthogonal functions; Solvents; Statistics; Anisotropic alignment; Electrical anisotropy; Experimental conditions; Magneto-rheological elastomers; Orthogonal directions; Percolation probability; Preferential orientation; Structural parameter; Angular distribution
Año:2014
Volumen:118
Número:35
Página de inicio:20594
Página de fin:20604
DOI: http://dx.doi.org/10.1021/jp504197w
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n35_p20594_Mietta

Referencias:

  • Gupta, M.P., Behnam, A., Lian, F., Estrada, D., Pop, E., Kumar, S., High Field Breakdown Characteristics of Carbon Nanotube Thin Film Transistors (2013) Nanotechnology, 24, p. 405204
  • Zeng, X., Xu, X., Shenai, P.M., Kovalev, E., Baudot, C., Mathews, N., Zhao, Y., Characteristics of the Electrical Percolation in Carbon Nanotubes/Polymer Nanocomposites (2011) J. Phys. Chem. C, 115, pp. 21685-21690
  • Kocabas, C., Meitl, M.A., Gaur, A., Shim, M., Rogers, J.A., Aligned Arrays of Single-Walled Carbon Nanotubes Generated from Random Networks by Orientationally Selective Laser Ablation (2004) Nano Lett., 4, pp. 2421-2426
  • Mietta, J.L., Jorge, G., Perez, O.E., Maeder, T., Negri, R.M., Superparamagnetic Anisotropic Elastomer Connectors Exhibiting Reversible Magneto-Piezoresistivity (2013) Sens. Actuators Phys., 192, pp. 34-41
  • Snow, E.S., Campbell, P.M., Ancona, M.G., Novak, J.P., High-Mobility Carbon-Nanotube Thin-Film Transistors on a Polymeric Substrate (2005) Appl. Phys. Lett., 86, p. 033105
  • Mietta, J.L., Jorge, G.A., Negri, R.M., A Flexible Strain Gauge Exhibiting Reversible Piezoresistivity Based on an Anisotropic Magnetorheological Polymer (2014) Smart Mater. Struct., 23, p. 085026
  • Collins, P.G., Bradley, K., Ishigami, M., Zettl, A., Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes (2000) Science, 287, pp. 1801-1804
  • Hicks, J., Behnam, A., Ural, A., Resistivity in Percolation Networks of One-Dimensional Elements with a Length Distribution (2009) Phys. Rev. e, 79, p. 012102
  • Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M., Conducting and Transparent Single-Wall Carbon Nanotube Electrodes for Polymer-Fullerene Solar Cells (2005) Appl. Phys. Lett., 87, p. 203511
  • Du, F., Fischer, J.E., Winey, K.I., Effect of Nanotube Alignment on Percolation Conductivity in Carbon Nanotube/Polymer Composites (2005) Phys. Rev. B, 72, p. 121404R
  • Peng, H., Sun, X., Highly Aligned Carbon Nanotube/Polymer Composites with Much Improved Electrical Conductivities (2009) Chem. Phys. Lett., 471, pp. 103-105
  • Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., Negri, R.M., Anisotropic Magnetoresistance and Piezoresistivity in Structured Fe3O4-Silver Particles in PDMS Elastomers at Room Temperature (2012) Langmuir, 28, pp. 6985-6996
  • Antonel, P.S., Jorge, G., Perez, O.E., Butera, A., Leyva, A.G., Negri, R.M., Magnetic and Elastic Properties of CoFe2O4-Poly(dimethylsiloxane) Magnetically Oriented Elastomer Nanocomposites (2011) J. Appl. Phys., 110, p. 043920
  • Kchit, N., Bossis, G., Piezoresistivity of Magnetorheological Elastomers (2008) J. Phys.: Condens. Matter, 20, p. 204136
  • Boczkowska, A., Awietj, S., (2012) Microstructure and Properties of Magnetorheological Elastomers, , InTech: Rijeka, Croatia
  • Yook, S.-H., Choi, W., Kim, Y., Conductivity of Stick Percolation Clusters with Anisotropic Alignments (2012) J. Korean Phys. Soc., 61, pp. 1257-1262
  • Li, J., Zhang, S.-L., Finite-Size Scaling in Stick Percolation (2009) Phys. Rev. e, 80, p. 040104R
  • Kim, Y., Yun, Y., Yook, S.-H., Explosive Percolation in a Nanotube-Based System (2010) Phys. Rev. e, 82, p. 061105
  • Žeželj, M., Stanković, I., Belić, A., Finite-Size Scaling in Asymmetric Systems of Percolating Sticks (2012) Phys. Rev. e, 85, p. 021101
  • Stauffer, D., Aharony, A., (1992) Introduction to Percolation Theory, , Taylor & Francis: Oxford, U.K
  • Matoz-Fernández, D.A., Linares, D.H., Ramírez-Pastor, A.J., Nonmonotonic Size Dependence of the Critical Concentration in 2D Percolation of Straight Rigid Rods under Equilibrium Conditions (2012) Eur. Phys. J. B, 85, p. 296
  • Ambrosetti, G., Grimaldi, C., Balberg, I., Maeder, T., Danani, A., Ryser, P., Solution of the Tunneling-Percolation Problem in the Nanocomposite Regime (2010) Phys. Rev. B, 81, p. 155434
  • Nigro, B., Grimaldi, C., Ryser, P., Chatterjee, A.P., Van Der Schoot, P., Quasiuniversal Connectedness Percolation of Polydisperse Rod Systems (2013) Phys. Rev. Lett., 110, p. 015701
  • Lin, K.C., Lee, D., An, L., Joo, Y.H., Finite-Size Scaling Features of Electric Conductivity Percolation in Nanocomposites (2013) Nanosci. Nanoeng., 1, pp. 15-22
  • Zheng, X., Forest, M.G., Vaia, R.A., Arlen, M., Zhou, R., A Strategy for Dimensional Percolation in Sheared Nanorod Dispersions (2007) Adv. Mater., 19, pp. 4038-4043
  • White, S.I., Didonna, B.A., Mu, M., Lubensky, T.C., Winey, K.I., Simulations and Electrical Conductivity of Percolated Networks of Finite Rods Various Degrees of Axial Alignment (2009) Phys. Rev. B, 79, p. 024301
  • Mertens, S., Moore, C., Continuum Percolation Thresholds in Two Dimensions (2012) Phys. Rev. e, 86, p. 061109
  • Newman, M.E.J., Ziff, R.M., Fast Monte Carlo Algorithm for Site or Bond Percolation (2001) Phys. Rev. e, 64, p. 016706
  • De Berg, M., Cheong, O., Van Kreveld, M., (2008) Computational Geometry: Algorithms and Applications, , Springer: New York
  • Erciyes, K., (2013) Distributed Graph Algorithms for Computer Networks, , Springer: New York
  • Devore, J.L., (2012) Probability and Statistics for Engineering and the Sciences, , Cengage Learning
  • Hovi, J.-P., Aharony, A., Scaling and Universality in the Spanning Probability for Percolation (1996) Phys. Rev. e, 53, pp. 235-253
  • Ziff, R.M., Correction-to-Scaling Exponent for Two-Dimensional Percolation (2011) Phys. Rev. e, 83, p. 020107
  • Stauffer, D., Search for Logarithmic Factors near the Two-Dimensional Percolation Threshold (1981) Phys. Lett. A, 83, pp. 404-405
  • Ziff, R.M., Newman, M.E.J., Convergence of Threshold Estimates for Two-Dimensional Percolation (2002) Phys. Rev. e, 66, p. 016129
  • Rintoul, M.D., Torquato, S., Precise Determination of the Critical Threshold and Exponents in a Three-Dimensional Continuum Percolation Model (1997) J. Phys. A: Math. Gen., 30, pp. 585-592
  • Cardy, J., The Number of Incipient Spanning Clusters in Two-Dimensional Percolation (1998) J. Phys. A: Math. Gen., 29, pp. 105-L110
  • Watts, G.M.T., A Crossing Probability for Critical Percolation in Two Dimensions (1996) J. Phys. A: Math. Gen., 29, pp. 363-L368
  • Langlands, R., Pouliot, P., Saint-Aubin, Y., Conformal Invariance in Two-Dimensional Percolation (1994) Bull. Am. Math. Soc., 30, pp. 1-61
  • Pruessner, G., Moloney, N.R., Numerical Results for Crossing, Spanning and Wrapping in Two-Dimensional Percolation (2003) J. Phys. A: Math. Gen., 36, p. 11213
  • Sheffield, S., Wilson, D.B., Schramms Proof of Watts Formula (2011) Ann. Probab., 39, pp. 1844-1863
  • Godoy, M., Moreno, A.J., Jorge, G.A., Ferrari, H.J., Antonel, P.S., Mietta, J.L., Ruiz, M., Bekeris, V., Micrometric Periodic Assembly of Magnetotactic Bacteria and Magnetic Nanoparticles Using Audio Tapes (2012) J. Appl. Phys., 111, p. 044905
  • Butera, A., Álvarez, N., Jorge, G., Ruiz, M.M., Mietta, J.L., Negri, R.M., Microwave Response of Anisotropic Magnetorheological Elastomers: Model and Experiments (2012) Phys. Rev. B, 86, p. 144424
  • Efimenko, K., Wallace, W.E., Genzer, J., Surface Modification of Sylgard-184 Poly(dimethylsiloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment (2002) J. Colloid Interface Sci., 254, pp. 306-315
  • Esteves, A.C.C., Brokken-Zijp, J., Laven, J., Huinink, H.P., Reuvers, N.J.W., Van, M. P., De With, G., Influence of Cross-Linker Concentration on the Cross-Linking of PDMS and the Network Structures Formed (2009) Polymer, 50, pp. 3955-3966

Citas:

---------- APA ----------
Mietta, J.L., Negri, R.M. & Tamborenea, P.I. (2014) . Numerical simulations of stick percolation: Application to the study of structured magnetorheological elastomers. Journal of Physical Chemistry C, 118(35), 20594-20604.
http://dx.doi.org/10.1021/jp504197w
---------- CHICAGO ----------
Mietta, J.L., Negri, R.M., Tamborenea, P.I. "Numerical simulations of stick percolation: Application to the study of structured magnetorheological elastomers" . Journal of Physical Chemistry C 118, no. 35 (2014) : 20594-20604.
http://dx.doi.org/10.1021/jp504197w
---------- MLA ----------
Mietta, J.L., Negri, R.M., Tamborenea, P.I. "Numerical simulations of stick percolation: Application to the study of structured magnetorheological elastomers" . Journal of Physical Chemistry C, vol. 118, no. 35, 2014, pp. 20594-20604.
http://dx.doi.org/10.1021/jp504197w
---------- VANCOUVER ----------
Mietta, J.L., Negri, R.M., Tamborenea, P.I. Numerical simulations of stick percolation: Application to the study of structured magnetorheological elastomers. J. Phys. Chem. C. 2014;118(35):20594-20604.
http://dx.doi.org/10.1021/jp504197w