Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water-surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity. © 2014 American Chemical Society.

Registro:

Documento: Artículo
Título:Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis
Autor:Factorovich, M.H.; Gonzalez Solveyra, E.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Adsorption; Adsorption isotherms; Condensation; Desorption; Hysteresis; Molecular dynamics; Nanopores; Adsorption and desorptions; Capillary condensation; Coarse grained models; Condensation pressure; Grand canonical ensemble; Heterogeneous cavitation; Molecular dynamics simulations; Water sorption isotherms; Contact angle
Año:2014
Volumen:118
Número:29
Página de inicio:16290
Página de fin:16300
DOI: http://dx.doi.org/10.1021/jp5000396
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v118_n29_p16290_Factorovich

Referencias:

  • Cohen, L.H., Hysteresis and the Capillary Theory of Adsorption of Vapors (1944) J. Am. Chem. Soc., 66, pp. 98-105
  • Emmett, P.H., Adsorption and Pore-Size Measurements on Charcoals and Whetlerites (1948) Chem. Rev., 43, pp. 69-148
  • Katz, S.M., Permanent Hysteresis in Physical Adsorption (1949) J. Phys. Colloid Chem., 53, pp. 1166-1186
  • Everett, D.H., Whitton, W.I., A General Approach to Hysteresis (1952) T. Faraday Soc., 48, p. 749
  • Everett, D.H., Haynes, J.M., Model Studies of Capillary Condensation. 1. Cylindrical Pore Model with Zero Contact Angle (1972) J. Colloid Interface Sci., 38, pp. 125-137
  • Derjaguin, B.V., Prog. Surf. Sci., 45
  • Defay, R., Prigogine, I., (1966) Surface Tension and Adsorption, , 1 st ed. Longmans: London
  • Rouquerol, F., Rouquerol, J., Sing, K., (1999) Adsorption by Powders and Porous Solids, , 1 st ed. Academic Press: New York
  • Thommes, M., Physical Adsorption Characterization of Nanoporous Materials (2010) Chem. Ing. Technol., 82, pp. 1059-1073
  • Inagaki, S., Fukushima, Y., Adsorption of Water Vapor and Hydrophobicity of Ordered Mesoporous Silica, FSM-16 (1998) Microporous Mesoporous Mater., 21, pp. 667-672
  • Gregg, S.J., Sing, K.S.W., (1982) Adsorption, Surface Area and Porosity, , 2nd ed. Academic Press: New York
  • Branton, P.J., Hall, P.G., Treguer, M., Sing, K.S.W., Adsorption of Carbon Dioxide, Sulfur Dioxide and Water Vapour by MCM-41, a Model Mesoporous Adsorbent (1995) J. Chem. Soc., Faraday Trans., 91, pp. 2041-2043
  • Llewellyn, P.L., Schueth, F., Grillet, Y., Rouquerol, F., Rouquerol, J., Unger, K.K., Water Sorption on Mesoporous Aluminosilicate MCM-41 (1995) Langmuir, 11, pp. 574-577
  • Llewellyn, P., Grillet, Y., Schuth, F., Reichert, H., Effect of Pore Size on Adsorbate Condensation and Hysteresis Within a Potential Model Adsorbent: M41S (1994) Microporous Mater., 3, pp. 345-349
  • Ravikovitch, P.I., Domhnaill S C, O., Neimark, A.V., Schuth, F.S., Unger, K.K., Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 (1995) Langmuir, 11, pp. 4765-4772
  • Matsumoto, A., Sasaki, T., Nishimiya, N., Tsutsumi, K., Evaluation of the Hydrophobic Properties of Mesoporous FSM-16 by Means of Adsorption Calorimetry (2001) Langmuir, 17, pp. 47-51
  • Takahara, S., Nakano, M., Kittaka, S., Kuroda, Y., Mori, T., Hamano, H., Yamaguchi, T.J., Neutron Scattering Study on Dynamics of Water Molecules in MCM-41 (1999) J. Phys. Chem. B, 103, pp. 5814-5819
  • Grunberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G., Limbach, H.-H., Buntkowsky, G., Hydrogen Bonding of Water Confined in Mesoporous Silica MCM-41 and SBA-15 Studied by 1H Solid-State NMR (2004) Chem.-Eur. J., 10, pp. 5689-5696
  • Brennan, J.K., Bandosz, T.J., Thomson, K.T., Gubbins, K.E., Water in Porous Carbons (2001) Colloids Surf. A-Physicochem. Eng. Aspects, 187, pp. 539-568
  • Easton, E.B., Machin, W.D., Adsorption of Water Vapor on a Graphitized Carbon Black (2000) J. Colloid Interface Sci., 231, pp. 204-206
  • Tao, Y., Muramatsu, H., Endo, M., Kaneko, K., Evidence of Water Adsorption in Hydrophobic Nanospaces of Highly Pure Double-Walled Carbon Nanotubes (2010) J. Am. Chem. Soc., 132, pp. 1214-1215
  • Heffelfinger, G.S., Van Swol, F., Gubbins, K.E., Adsorption Hysteresis in Narrow Pores (1988) J. Chem. Phys., 89, pp. 5202-5205
  • Ball, P.C., Evans, R., Temperature Dependence of Gas Adsorption on a Mesoporous Solid: Capillary Criticality and Hysteresis (1989) Langmuir, 5, pp. 714-723
  • Peterson, B.K., Heffelfinger, G.S., Gubbins, K.E., Van Swol, F., Layering Transitions in Cylindrical Pores (1990) J. Chem. Phys., 93, pp. 679-685
  • Papadopoulou, A., Van Swol, F., Marini Bettolo Marconi, U., Pore-End Effects on Adsorption Hysteresis in Cylindrical and Slitlike Pores (1992) J. Chem. Phys., 97, pp. 6942-6952
  • Votyakov, E.V., Tovbin, Y.K., Macelroy, J.M.D., Roche, A., A Theoretical Study of the Phase Diagrams of Simple Fluids Confined within Narrow Pores (1999) Langmuir, 15, pp. 5713-5721
  • Monson, P., Understanding Adsorption/Desorption Hysteresis for Fluids in Mesoporous Materials Using Simple Molecular Models and Classical Density Functional Theory (2012) Micropor. Mesopor. Mater., 160, pp. 47-66
  • Gubbins, K.E., Liu, Y.-C., Moore, J.D., Palmer, J.C., The Role of Molecular Modeling in Confined Systems: Impact and Prospects (2011) Phys. Chem. Chem. Phys., 13, pp. 58-85
  • Coasne, B., Hung, F.R., Pellenq, R.J.-M., Siperstein, F.R., Gubbins, K.E., Adsorption of Simple Gases in MCM-41 Materials: The Role of Surface Roughness (2006) Langmuir, 22, pp. 194-202
  • Fan, C., Do, D.D., Nicholson, D., On the Cavitation and Pore Blocking in Slit-Shaped Ink-Bottle Pores (2011) Langmuir, 27, pp. 3511-3526
  • Smit, B., Siepmann, J.I., Simulating the Adsorption of Alkanes in Zeolites (1994) Science, 264, pp. 1118-1120
  • Sant, M., Leyssale, J.-M., Papadopoulos, G.K., Theodorou, D.N., Molecular Dynamics of Carbon Dioxide, Methane and Their Mixtures in a Zeolite Possessing Two Independent Pore Networks as Revealed by Computer Simulations (2009) J. Phys. Chem. B, 113, pp. 13761-13767
  • Smit, B., Maesen, T.L.M., Molecular Simulations of Zeolites: Adsorption, Diffusion, and Shape Selectivity (2008) Chem. Rev., 108, pp. 4125-4184
  • Brovchenko, I., Geiger, A., Oleinikova, A., Water in Nanopores. I. Coexistence Curves from Gibbs Ensemble Monte Carlo Simulations (2004) J. Chem. Phys., 120, pp. 1958-1972
  • Shirono, K., Daiguji, H., Molecular Simulation of the Phase Behavior of Water Confined in Silica Nanopores (2007) J. Phys. Chem. C, 111, pp. 7938-7946
  • Siboulet, B., Coasne, B., Dufrêche, J.-F., Turq, P., Hydrophobic Transition in Porous Amorphous Silica (2011) J. Phys. Chem. B, 115, pp. 7881-7886
  • Schreiber, A., Bock, H., Schoen, M., Findenegg, G.H., Effect of Surface Modification on the Pore Condensation of Fluids: Experimental Results and Density Functional Theory (2002) Mol. Phys., 100, pp. 2097-2107
  • Molinero, V., Moore, E.B., Water Modeled As an Intermediate Element between Carbon and Silicon (2009) J. Phys. Chem. B, 113, pp. 4008-4016
  • De La Llave, E., Molinero, V., Scherlis, D.A., Water Filling of Hydrophilic Nanopores (2010) J. Chem. Phys., 133, p. 34513
  • De La Llave, E., Molinero, V., Scherlis, D.A., Role of Confinement and Surface Affinity on Filling Mechanisms and Sorption Hysteresis of Water in Nanopores (2011) J. Phys. Chem. C, 116, pp. 1833-1840
  • Solveyra, E.G., De La Llave, E., Soler-Illia, G.J.A.A., Molinero, V., Scherlis, D.A., Structure, Dynamics, and Phase Behavior of Water in TiO2 Nanopores (2013) J. Phys. Chem. C, 117, pp. 3330-3342
  • Muller, E.A., Rull, L.F., Vega, L.F., Gubbins, K.E., Adsorption of Water on Activated Carbons: A Molecular Simulation Study (1996) J. Phys. Chem., 100, pp. 1189-1196
  • Brennan, J.K., Thomson, K.T., Gubbins, K.E., Adsorption of Water in Activated Carbons: Effects of Pore Blocking and Connectivity (2002) Langmuir, 18, pp. 5438-5447
  • Striolo, A., Chialvo, A.A., Cummings, P.T., Gubbins, K.E., Simulated Water Adsorption in Chemically Heterogeneous Carbon Nanotubes (2006) J. Chem. Phys., 124, p. 74710
  • Liu, J.-C., Monson, P.A., Does Water Condense in Carbon Pores? (2005) Langmuir, 21, pp. 10219-10225
  • Liu, J.-C., Monson, P.A., Monte Carlo Simulation Study of Water Adsorption in Activated Carbon (2006) Ind. Eng. Chem. Res., 45, pp. 5649-5656
  • Monson, P.A., Contact Angles, Pore Condensation, and Hysteresis: Insights from a Simple Molecular Model (2008) Langmuir, 24, pp. 12295-12302
  • Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2 nd ed. Academic Press: New York
  • Heffelfinger, G.S., Van Swol, F., Diffusion in Lennard-Jones Fluids Using Dual Control Volume Grand Canonical Molecular Dynamics Simulation (DCV-GCMD) (1994) J. Chem. Phys., 100, pp. 7548-7552
  • Arya, G., Chang, H.-S., Maginn, E.J., A Critical Comparison of Equilibrium, Non-equilibrium and Boundary-Driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials (2001) J. Chem. Phys., 115, pp. 8112-8124
  • Cracknell, R.F., Nicholson, D., Quirke, N., Direct Molecular Dynamics Simulation of Flow Down a Chemical Potential Gradient in a Slit-Shaped Micropore (1995) Phys. Rev. Lett., 74, pp. 2463-2466
  • Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • Moore, E.B., Molinero, V., Structural Transformation in Supercooled Water Controls the Crystallization Rate of Ice (2011) Nature, 479, pp. 506-508
  • Moore, E.B., Allen, J.T., Molinero, V., Liquid-Ice Coexistence below the Melting Temperature for Water Confined in Hydrophilic and Hydrophobic Nanopores (2012) J. Phys. Chem. C, 116, pp. 7507-7514
  • Factorovich, M., Molinero, V., Scherlis, D.A., A Simple Grand Canonical Approach to Compute the Vapor Pressure of Bulk and Finite Size Systems (2014) J. Chem. Phys., p. 064111
  • Factorovich, M., Molinero, V., Scherlis, D.A., Vapor Pressure of Water Nanodroplets (2014) J. Am. Chem. Soc., pp. 4508-4514
  • Giovambattista, N., Debenedetti, P.G., Rosky, P.J., Effect of Surface Polarity on Water Contact Angle and Interfacial Hydration Structure (2007) J. Phys. Chem. B, 111, pp. 9581-9587
  • Giovambattista, N., Rosky, P.J., Debenedetti, P.G., Effect of Temperature on the Structure and Phase Behavior of Water Confined by Hydrophobic, Hydrophilic, and Heterogeneous Surfaces (2009) J. Phys. Chem. B, 113, pp. 13723-13734
  • Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Koumoutsakos, P., On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes (2003) J. Phys. Chem. B, 107, pp. 1345-1352
  • CRC Handbook of Chemistry and Physics, pp. 2000-2001. , 81 st ed. CRC Press: Boca Raton, FL
  • Tarazona, P., Marini Bettolo Marconi, U., Evans, R., Phase Equilibria of Fluid Interfaces and Confined Fluids (1987) Mol. Phys., 60, pp. 573-595
  • Bruno, E., Marini Bettolo Marconi, U., Evans, R., Phase Transitions in a Confined Lattice Gas: Prewetting and Capillary Condensation (1987) Physica A, 141, pp. 187-210
  • Evans, R., Fluids Adsorbed in Narrow Pores: Phase Equilibria and Structure (1990) J. Phys.: Condens. Matter., 2, pp. 8989-9007
  • Cole, M.W., Saam, W.F., Excitation Spectrum and Thermodynamic Properties of Liquid Films in Cylindrical Pores (1974) Phys. Rev. Lett., 32, pp. 985-988
  • Evans, R., Marconi, U.M.B., Tarazona, P., Fluids in Narrow Pores: Adsorption, Capillary Condensation, and Critical Points (1986) J. Chem. Phys., 84, pp. 2376-2399
  • Nicolaides, D., Evans, R., Monte Carlo Study of Phase Transitions in a Confined Lattice Gas (1989) Phys. Rev. B, 39, pp. 9336-9342
  • Peterson, B.K., Gubbins, K.E., Heffelfinger, G.S., Marini Bettolo Marconi, U., Van Swol, F., Lennard-Jones Fluids in Cylindrical Pores: Nonlocal Theory and Computer Simulation (1988) J. Chem. Phys., 88, pp. 6487-6500
  • Zhao, X.S., Lu, G.Q., Modification of MCM-41 by Surface Silylation with Trimethylchlorosilane and Adsorption Study (1998) J. Phys. Chem. B, 102, pp. 1556-1561
  • Kocherbitov, V., Alfredsson, V., Assessment of Porosities of SBA-15 and MCM-41 Using Water Sorption Calorimetry (2011) Langmuir, 27, pp. 3889-3897
  • Ng, E.-P., Mintova, S., Nanoporous Materials with Enhanced Hydrophilicity and High Water Sorption Capacity (2008) Microporous Mesoporous Mater., 114, pp. 1-26
  • Lamb, R.N., Furlong, D.N., Controlled Wettability of Quartz Surfaces (1982) J. Chem. Soc., Faraday Trans. 1, 78, pp. 61-73
  • Puibasset, J., Kierlik, E., Tarjus, G., Influence of Reservoir Size on the Adsorption Path in an Ideal Pore (2009) J. Chem. Phys., 131, pp. 124123-124132
  • Kierlik, E., Puibasset, J., Tarjus, G., Effect of the Reservoir Size on Gas Adsorption in Inhomogeneous Porous Media (2009) J. Phys.: Condens. Matter, 21, pp. 155102-155117
  • Men, Y., Yan, Q., Jiang, G., Zhang, X., Wang, W., Nucleation and Hysteresis of Vapor-Liquid Phase Transitions in Confined Spaces: Effects of Fluid-Wall Interaction (2009) Phys. Rev. e, 79, pp. 51602-51613
  • Nguyen, T.X., Bhatia, S.K., How Water Adsorbs in Hydrophobic Nanospaces (2011) J. Phys. Chem. C, 115, pp. 16606-16612

Citas:

---------- APA ----------
Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V. & Scherlis, D.A. (2014) . Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis. Journal of Physical Chemistry C, 118(29), 16290-16300.
http://dx.doi.org/10.1021/jp5000396
---------- CHICAGO ----------
Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A. "Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis" . Journal of Physical Chemistry C 118, no. 29 (2014) : 16290-16300.
http://dx.doi.org/10.1021/jp5000396
---------- MLA ----------
Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A. "Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis" . Journal of Physical Chemistry C, vol. 118, no. 29, 2014, pp. 16290-16300.
http://dx.doi.org/10.1021/jp5000396
---------- VANCOUVER ----------
Factorovich, M.H., Gonzalez Solveyra, E., Molinero, V., Scherlis, D.A. Sorption isotherms of water in nanopores: Relationship between hydropohobicity, adsorption pressure, and hysteresis. J. Phys. Chem. C. 2014;118(29):16290-16300.
http://dx.doi.org/10.1021/jp5000396