Artículo

González Solveyra, E.; De La Llave, E.; Molinero, V.; Soler-Illia, G.J.A.A.; Scherlis, D.A. "Structure, dynamics, and phase behavior of water in TiO2 nanopores" (2013) Journal of Physical Chemistry C. 117(7):3527-3536
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Mesoporous titania is a highly studied material due to its energy and environment-related applications, which depend on its tailored surface and electronic properties. Understanding the behavior of water in titania pores is a central issue for practical purposes in photocatalysis, solar cells, bone implants, or optical sensors. In particular, the mechanisms of capillary condensation of water in titania mesopores and the organization and mobility of water as a function of pore filling fraction are not yet known. In this work, molecular dynamics simulations of water confined in TiO2-rutile pores of diameters 1.3, 2.8, and 5.1 nm were carried out at various water contents. Water density and diffusion coefficients were obtained as a function of the distance from the surface. The proximity to the interface affects density and diffusivity within a distance of around 10 Å from the walls, beyond which all properties tend to converge. The densities of the confined liquid in the 2.8 and the 5.1 nm pores decrease, respectively, 7% and 4% with respect to bulk water. This decrease causes the water translational mobility in the center of the 2.8 nm pore to be appreciably larger than in bulk. Capillary condensation takes place in equilibrium for a filling of 71% in the 2.8 nm pore and in conditions of high supersaturation in the 5.1 nm pore, at a filling of 65%. In the former case, the surface density increases uniformly with filling until condensation, whereas in the larger nanopore, a cluster of water molecules develops on a localized spot on the surface for fillings just below the transition. No phase transition is detected in the smaller pore. For all the systems studied, the first monolayer of water is strongly immobilized on the interface, thus reducing the accessible or effective diameter of the pore by around 0.6 nm. As a consequence, the behavior of water in these pores turns out to be comparable to its behavior in less hydrophilic pores of smaller size. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Structure, dynamics, and phase behavior of water in TiO2 nanopores
Autor:González Solveyra, E.; De La Llave, E.; Molinero, V.; Soler-Illia, G.J.A.A.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica Y Química Física, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Pab II, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Gerencia Química Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. Gral Paz 1499, San Martin, B1650KNA Buenos Aires, Argentina
Idioma: Inglés
Año:2013
Volumen:117
Número:7
Página de inicio:3527
Página de fin:3536
DOI: http://dx.doi.org/10.1021/jp308672a
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v117_n7_p3527_GonzalezSolveyra

Referencias:

  • Mann, S., Ozin, G.A., Synthesis of Inorganic Materials with Complex Form (1996) Nature, 382, pp. 313-318
  • Alfredsson, V., Anderson, M.W., Structure of MCM-48 revealed by transmission electron microscopy (1996) Chem. Mater., 8, pp. 1141-1146
  • Wong, M.S., Jeng, E.S., Ying, J.Y., Supramolecular templating of thermally stable crystalline mesoporous metal oxides using nanoparticulate precursors (2001) Nano Lett., 1, pp. 637-642
  • Luo, H., Wang, C., Yan, Y., Synthesis of mesostructured titania with controlled crystalline framework (2003) Chem. Mater., 15, pp. 3841-3846
  • De Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J., Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures (2002) Chem. Rev., 102, pp. 4093-4138
  • Tian, B., Liu, X., Solovyov, L.A., Liu, Z., Yang, H., Zhang, Z., Xie, S., Zhao, D., Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures (2003) J. Am. Chem. Soc., 126, pp. 865-875
  • Wan, Y., Zhao, D.Y., On the controllable soft-templating approach to mesoporous silicates (2007) Chem. Rev., 107, pp. 2821-2860
  • Lee, J., Orilall, C.M., Warren, S.C., Kamperman, M., DiSalvo, F.J., Wiesner, U., Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores (2008) Nat. Mater., 7, pp. 222-228
  • Jaroniec, Schüth, F., Preface to the special issue: Templated materials (2008) Chem. Mater., 20, pp. 599-600
  • Rozes, L., Sanchez, C., Titanium oxo-clusters: Precursors for a lego-like construction of nanostructured hybrid materials (2011) Chem. Soc. Rev., 40, pp. 1006-1030
  • Llewellyn, P.L., Schueth, F., Grillet, Y., Rouquerol, F., Rouquerol, J., Unger, K.K., Water sorption on mesoporous aluminosilicate MCM-41 (1995) Langmuir, 11, pp. 574-577
  • Branton, P.J., Hall, P.G., Treguer, M., Sing, K.S.W., Adsorption of carbon dioxide, sulfur dioxide and water vapour by MCM-41 a model mesoporous adsorbent (1995) J. Chem. Soc., Faraday Trans., 91, pp. 2041-2043
  • Inagaki, S., Fukushima, Y., Adsorption of water vapor and hydrophobicity of ordered mesoporous silica, FSM- 16 (1998) Microporous Mesoporous Mater., 21, pp. 667-672
  • Oh, J.S., Shim, W.G., Lee, J.W., Kim, J.H., Moon, H., Seo, G., Adsorption equilibrium of water vapor on mesoporous materials (2003) J. Chem. Eng. Data, 48, pp. 1458-1462
  • Ng, E.-P., Mintova, S., Nanoporous materials with enhanced hydrophilicity and high water sorption capacity (2008) Microporous Mesoporous Mater., 114, pp. 1-26
  • Kocherbitov, V., Alfredsson, V., Assessment of porosities of SBA-15 and MCM-41 using water sorption calorimetry (2011) Langmuir, 27, pp. 3889-3897
  • Morishige, K., Uematsu, H., The proper structure of cubic ice confined in mesopores (2005) J. Chem. Phys., 122. , 044711-044711-4
  • Chen, S.-H., Mallamace, F., Mou, C.-Y., Broccio, M., Corsaro, C., Faraone, A., Liu, L., The violation of the Stokes-Einstein relation in supercooled water (2006) Proc. Natl. Acad. Sci., 103, pp. 12974-12978
  • Jaehnert, S., Chavez, F.V., Schaumann, G.E., Schreiber, A., Schoenhoff, M., Findenegg, G.H., Melting and Freezing of Water in Cylindrical Silica Nanopores RID E-6935-2011 (2008) Phys. Chem. Chem. Phys., 10, pp. 6039-6051
  • Erko, M., Findenegg, G.H., Cade, N., Michette, A.G., Paris, O., Confinement-induced structural changes of water studied by Raman scattering (2011) Phys. Rev. B, 84, p. 104205
  • Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G.H., Limbach, H., Buntkowsky, G., Hydrogen bonding of water confined in mesoporous silica MCM-41 and SBA-15 studied by 1H solid-state NMR (2004) Chem.-Eur. J., 10, pp. 5689-5696
  • Schoch, R.B., Han, J., Renaud, P., Transport phenomena in nanofluidics (2008) Rev. Mod. Phys., 80, pp. 839-883
  • Takahara, S., Nakano, M., Kittaka, S., Kuroda, Y., Mori, T., Hamano, H., Yamaguchi, T., Neutron scattering study on dynamics of water molecules in MCM-41 (1999) J. Phys. Chem. B, 103, pp. 5814-5819
  • Takahara, S., Sumiyama, N., Kittaka, S., Yamaguchi, T., Bellissent-Funel, M.-C., Neutron Scattering Study on Dynamics of Water Molecules in MCM-41. 2. Determination of translational diffusion coefficient (2005) J. Phys. Chem. B, 109, pp. 11231-11239
  • Steiner, E., Bouguet-Bonnet, S., Blin, J.-L., Canet, D., Water behavior in mesoporous materials as studied by NMR relaxometry (2011) J. Phys. Chem. A, 115, pp. 9941-9946
  • Papadopoulou, A., Van Swol, F., Marini Bettolo Marconi, U., Pore-end effects on adsorption hysteresis in cylindrical and slitlike pores (1992) J. Chem. Phys., 97, pp. 6942-6952
  • Heffelfinger, G.S., Van Swol, F., Gubbins, K.E., Adsorption hysteresis in narrow pores (1988) J. Chem. Phys., 89, pp. 5202-5205
  • Vishnyakov, A., Neimark, A.V., Studies of liquid-vapor equilibria, criticality, and spinodal transitions in nanopores by the gauge cell Monte Carlo simulation method (2001) J. Phys. Chem. B, 105, pp. 7009-7020
  • Brovchenko, I., Geiger, A., Oleinikova, A., Paschek, D., Phase coexistence and dynamic properties of water in nanopores (2003) Eur. Phys. J. E, 12, pp. 69-76
  • Brovchenko, I., Geiger, A., Oleinikova, A., Water in nanopores. I. Coexistence curves from gibbs ensemble Monte Carlo simulations (2004) J. Chem. Phys., 120, pp. 1958-1972
  • Kierlik, E., Puibasset, J., Tarjus, G., Effect of the reservoir size on gas adsorption in inhomogeneous porous media (2009) J. Phys.: Condens. Matter, 21, p. 155102
  • Smit, B., Maesen, T.L.M., Molecular simulations of zeolites: Adsorption, diffusion, and shape selectivity (2008) Chem. Rev., 108, pp. 4125-4184
  • Giovambattista, N., Rossky, P.J., Debenedetti, P.G., Effect of temperature on the structure and phase behavior of water confined by hydrophobic, hydrophilic, and heterogeneous surfaces (2009) J. Phys. Chem. B, 113, pp. 13723-13734
  • Romero-Vargas Castrillón, S., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., Effect of surface polarity on the structure and dynamics of water in nanoscale confinement (2009) J. Phys. Chem. B, 113, pp. 1438-1446
  • Romero-Vargas Castrillón, S., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., Evolution from surface-influenced to bulk-like dynamics in nanoscopically confined water (2009) J. Phys. Chem. B, 113, pp. 7973-7976
  • Wei, M.-J., Zhou, J., Lu, X., Zhu, Y., Liu, W., Lu, L., Zhang, L., Diffusion of water molecules confined in slits of rutile TiO2(110) and graphite(0001) (2011) Fluid Phase Equilib., 302, pp. 316-320
  • De La Llave, E., Molinero, V., Scherlis, D.A., Water filling of hydrophilic nanopores (2010) J. Chem. Phys., 133, p. 034513
  • De La Llave, E., Molinero, V., Scherlis, D.A., (2012) J. Phys. Chem. C, 116, pp. 1833-1840
  • Shirono, K., Daiguji, H., Molecular simulation of the phase behavior of water confined in silica nanopores (2007) J. Phys. Chem. C, 111, pp. 7938-7946
  • Malani, A., Ayappa, K.G., Murad, S., Influence of hydrophilic surface specificity on the structural properties of confined water (2009) J. Phys. Chem. B, 113, pp. 13825-13839
  • Gallo, P., Rovere, M., Spohr, E., Glass transition and layering effects in confined water: A computer simulation study (2000) J. Chem. Phys., 113, pp. 11324-11335
  • Gallo, P., Rapinesi, M., Rovere, M., Confined water in the low hydration regime (2002) J. Chem. Phys., 117, pp. 369-375
  • Gallo, P., Rovere, M., Chen, S.-H., Dynamic crossover in supercooled confined water: Understanding bulk properties through confinement (2010) J. Phys. Chem. Lett., 1, pp. 729-733
  • Milischuk, A.A., Ladanyi, B.M., Structure and dynamics of water confined in silica nanopores (2011) J. Chem. Phys., 135, p. 174709
  • Chen, X., Mao, S.S., Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications (2007) Chem. Rev., 107, pp. 2891-2959
  • Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C., Grosso, D., Boissiere, C., Critical aspects in the production of periodically ordered mesoporous titania thin films (2012) Nanoscale, 4, pp. 2549-2566
  • Zhang, C., Lindan, P.J.D., Multilayer water adsorption on rutile TiO2(110): A first-principles study (2003) J. Chem. Phys., 118, p. 4620
  • Harris, L.A., Quong, A.A., Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110) (2004) Phys. Rev. Lett., 93, p. 086105
  • Tilocca, A., Selloni, A., Vertical and lateral order in adsorbed water layers on anatase TiO2(101) (2004) Langmuir, 20, pp. 8379-8384
  • Bandura, A.V., Kubicki, J.D., Sofo, J.O., Comparisons of multilayer H2O adsorption onto the (110) surfaces of α-TiO2 and SnO2 as calculated with density functional theory (2008) J. Phys. Chem. B, 112, pp. 11616-11624
  • Kowalski, P.M., Meyer, B., Marx, D., Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption (2009) Phys. Rev. B, 79, p. 115410
  • Sánchez, V.M., De La Llave, E., Scherlis, D.A., Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface (2011) Langmuir, 27, pp. 2411-2419
  • Sun, C., Liu, L.-M., Selloni, A., Lu, G.Q., Smith, S.C., Titania-water interactions: A review of theoretical studies (2010) J. Mater. Chem., 20, pp. 10319-10334
  • Bandura, A.V., Kubicki, J.D., Derivation of force field parameters for TiO2-H2O systems from ab initio calculations (2003) J. Phys. Chem. B, 107, pp. 11072-11081
  • Alimohammadi, M., Fichthorn, K.A., A force field for the interaction of water with TiO2 surfaces (2011) J. Phys. Chem. C, 115, pp. 24206-24214
  • Předota, M., Bandura, A.V., Cummings, P.T., Kubicki, J.D., Wesolowski, D.J., Chialvo, A.A., Machesky, M.L., Electric double layer at the rutile (110) surface. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials (2004) J. Phys. Chem. B, 108, pp. 12049-12060
  • Koparde, V.N., Cummings, P.T., Molecular dynamics study of water adsorption on TiO2 nanoparticles (2007) J. Phys. Chem. C, 111, pp. 6920-6926
  • De La Llave, E., (2012) Modelado Computacional del Comportamiento Molecular en Interfases Y Entornos Nanoestructurados, , http://digital.bl.fcen.uba.ar/, Ph.D. thesis, Universidad de Buenos Aires
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., The missing term in effective pair potentials (1987) J. Phys. Chem., 91, pp. 6269-6271
  • Ryckaert, J.-P., Ciccotti, G., Berendsen, H.J.C., Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes (1977) J. Comput. Phys., 23, pp. 327-341
  • Masanori, M., Akaogi, M., Molecular dynamics simulation of the structural and physical properties of the four polymorphs of TiO2 (1991) Mol. Simul., 6, pp. 239-244
  • Plimpton, S., Fast parallel algorithms for short-range molecular dynamics (1995) J. Comput. Phys., 117, pp. 1-19
  • LAMMPS Molecular Dynamics Simulator, , http://lammps.sandia.gov
  • Hockney, R.W., Eastwood, J.W., (1992) Computer Simulation Using Particles, , Taylor & Francis: New York
  • Humphrey, W., Dalke, A., Schulten, K., VMD: visual molecular dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Lounnas, V., Pettitt, B.M., Phillips, G.N., A global model of the protein-solvent interface (1994) Biophys. J., 66, pp. 601-614
  • Lee, S.L., Debenedetti, P.G., Errington, J.R., A computational study of hydration, solution structure, and dynamics in dilute carbohydrate solutions (2005) J. Chem. Phys., 122. , 204511-204511-10
  • Naono, H., Hakuman, M., Analysis of porous texture by means of water vapor adsorption isotherm with particular attention to lower limit of hysteresis loop (1993) J. Colloid Interface Sci., 158, pp. 19-26
  • Předota, M., Cummings, P.T., Wesolowski, D.J., Electric double layer at the rutile (110) surface. 3. Inhomogeneous viscosity and diffusivity measurement by computer simulations (2007) J. Phys. Chem. C, 111, pp. 3071-3079
  • Mamontov, E., Wesolowski, D.J., Vlcek, L., Cummings, P.T., Rosenqvist, J., Wang, W., Cole, D.R., Dynamics of hydration water on rutile studied by backscattering neutron spectroscopy and molecular dynamics simulation (2008) J. Phys. Chem. C, 112, pp. 12334-12341
  • Mancinelli, R., Imberti, S., Soper, A.K., Liu, K.H., Mou, C.Y., Bruni, F., Ricci, M.A., Multiscale approach to the structural study of water confined in MCM41 (2009) J. Phys. Chem. B, 113, pp. 16169-16177
  • Sakuma, H., Kawamura, K., Structure and dynamics of water on Li+-, Na+-, K+-, Cs+-, H3O+-exchanged muscovite surfaces: A molecular dynamics study (2011) Geochim. Cosmochim. Acta, 75, pp. 63-81
  • Mamontov, E., Vlcek, L., Wesolowski, D.J., Cummings, P.T., Wang, W., Anovitz, L.M., Rosenqvist, J., Garcia Sakai, V., Dynamics and structure of hydration water on rutile and cassiterite nanopowders studied by quasielastic neutron scattering and molecular dynamics simulations (2007) J. Phys. Chem. C, 111, pp. 4328-4341
  • Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Atomic scale characterization of interfacial water near an oxide surface using molecular dynamics simulations (2012) Phys. Chem. Chem. Phys., 14, pp. 15593-15605
  • Sciortino, F., Gallo, P., Tartaglia, P., Chen, S.-H., Supercooled water and the kinetic glass transition (1996) Phys. Rev. E, 54, pp. 6331-6343
  • Farrer, R.A., Fourkas, J.T., Orientational dynamics of liquids confined in nanoporous sol-gel glasses studied by optical kerr effect spectroscopy (2003) Acc. Chem. Res., 36, pp. 605-612
  • Elola, M.D., Rodriguez, J., Laria, D., Structure and dynamics of liquid methanol confined within functionalized silica nanopores (2010) J. Chem. Phys., 133. , 154707-154707-9
  • Van Der Spoel, D., Van Maaren, P.J., Berendsen, H.J.C.A., Systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field (1998) J. Chem. Phys., 108, pp. 10220-10230
  • Luzar, A., Chandler, D., Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations (1993) J. Chem. Phys., 98, p. 8160

Citas:

---------- APA ----------
González Solveyra, E., De La Llave, E., Molinero, V., Soler-Illia, G.J.A.A. & Scherlis, D.A. (2013) . Structure, dynamics, and phase behavior of water in TiO2 nanopores. Journal of Physical Chemistry C, 117(7), 3527-3536.
http://dx.doi.org/10.1021/jp308672a
---------- CHICAGO ----------
González Solveyra, E., De La Llave, E., Molinero, V., Soler-Illia, G.J.A.A., Scherlis, D.A. "Structure, dynamics, and phase behavior of water in TiO2 nanopores" . Journal of Physical Chemistry C 117, no. 7 (2013) : 3527-3536.
http://dx.doi.org/10.1021/jp308672a
---------- MLA ----------
González Solveyra, E., De La Llave, E., Molinero, V., Soler-Illia, G.J.A.A., Scherlis, D.A. "Structure, dynamics, and phase behavior of water in TiO2 nanopores" . Journal of Physical Chemistry C, vol. 117, no. 7, 2013, pp. 3527-3536.
http://dx.doi.org/10.1021/jp308672a
---------- VANCOUVER ----------
González Solveyra, E., De La Llave, E., Molinero, V., Soler-Illia, G.J.A.A., Scherlis, D.A. Structure, dynamics, and phase behavior of water in TiO2 nanopores. J. Phys. Chem. C. 2013;117(7):3527-3536.
http://dx.doi.org/10.1021/jp308672a