Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Patterned arrays of gold nanoparticles (AuNPs) are prepared using scanning electrochemical microscopy by electrochemical reduction of a gold salt at a platinum ultramicroelectrode positioned on top of an unbiased gold surface, modified with a biphenyl dithiol self-assembled monolayer (SAM). The synthesized AuNPs are chemisorbed on the thiolated SAM, and by moving the microelectrode in a lateral direction across the surface while applying a reduction potential, particle-like lines are generated. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Patterning gold nanoparticle using scanning electrochemical microscopy
Autor:Abad, J.M.; Tesio, A.Y.; Pariente, F.; Lorenzo, E.
Filiación:Departamento de Química Analítica y Análisis Instrumental, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus UAM, Fáraday, 9, Cantoblanco, 28049 Madrid, Spain
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Pabelloìn 2, AR-1428 Buenos Aires, Argentina
Palabras clave:Electrochemical reductions; Gold nanoparticle; Gold Nanoparticles; Lateral directions; Patterned arrays; Reduction potential; Scanning electrochemical microscopy; Ultramicroelectrodes; Electrolytic reduction; Metal nanoparticles; Microelectrodes; Scanning electron microscopy; Scanning probe microscopy; Self assembled monolayers; Gold
Año:2013
Volumen:117
Número:42
Página de inicio:22087
Página de fin:22093
DOI: http://dx.doi.org/10.1021/jp406980b
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v117_n42_p22087_Abad

Referencias:

  • Ono, L.K., Cuenya, B.R., Formation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects (2008) J. Phys. Chem. C, 112, pp. 4676-4686
  • Stratakis, M., Garcia, H., Catalysis by Supported Gold Nanoparticles: Beyond Aerobic Oxidative Processes (2012) Chem. Rev., 112, pp. 4469-4506
  • Covington, E., Bohrer, F.I., Xu, C., Zellers, E.T., Kurdak, Ç., Densely Integrated Array of Chemiresistor Vapor Sensors with Electron-Beam Patterned Monolayer-Protected Gold Nanoparticle Interface Films (2010) Lab Chip, 10, pp. 3058-3060
  • Menard, E., Meitl, M.A., Sun, Y., Park, J., Shir, D.J., Nam, Y.S., Jeon, S., Rogers, J.A., Micro- and Nanopatterning Techniques for Organic Electronic and Optoelectronic Systems (2007) Chem. Rev., 107, pp. 1117-1160
  • Shipway, A.N., Katz, E., Willner, I., Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications (2000) ChemPhysChem, 1, pp. 18-52
  • Daniel, M.C., Astruc, D., Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis and Nanotechnology (2004) Chem. Rev., 104, pp. 293-346
  • Xia, Y., Rogers, J.A., Paul, K.E., Whitesides, G.M., Unconventional Methods for Fabricating and Patterning Nanostructures (1999) Chem. Rev., 99, pp. 1823-1848
  • Lu, N., Gleiche, M., Zheng, J., Lenhert, S., Xu, B., Chi, L., Fuchs, H., Fabrication of Chemically Patterned Surfaces Based on Template-Directed Self-Assembly (2002) Adv. Mater., 14, pp. 1812-1815
  • Foster, E., Kearns, G., Goto, S., Hutchison, J.E., Patterned Gold-Nanoparticle Monolayers Assembled on the Oxide of Silicon (2005) Adv. Mater., 17, pp. 1542-1545
  • Xia, D., Brueck, S.R.J., A Facile Approach to Directed Assembly of Patterns of Nanoparticles Using Interference Lithography and Spin Coating (2004) Nano Lett., 4, pp. 1295-1299
  • Subramani, C., Dickert, S., Yeh, Y.-C., Tuominen, M.T., Rotello, V.M., Supramolecular Functionalization of Electron-Beam Generated Nanostructures (2011) Langmuir, 27, pp. 1543-1545
  • Werts, M.H.V., Lambert, M., Bourgoin, J.-P., Brust, M., Nanometer Scale Patterning of Langmuir-Blodgett Films of Gold Nanoparticles by Electron Beam Lithography (2002) Nano Lett., 2, pp. 43-47
  • Corbierre, M.K., Beerens, J., Lennox, R.B., Gold Nanoparticles Generated by Electron Beam Lithography of Gold(I)-Thiolate Thin Films (2005) Chem. Mater., 17, pp. 5774-5779
  • Mendes, P.M., Jacke, S., Critchley, K., Plaza, J., Chen, Y., Nikitin, K., Palmer, R.E., Fitzmaurice, D., Gold Nanoparticle Patterning of Silicon Wafers Using Chemical e-Beam Lithography (2004) Langmuir, 20, pp. 3766-3768
  • Liu, X., Fu, L., Hong, S., Dravid, V.P., Mirkin, C.A., Arrays of Magnetic Nanoparticles Patterned via "dip-Pen" Nanolithography (2002) Adv. Mater., 14, pp. 231-234
  • Braunschweig, A.B., Senesi, A.J., Mirkin, C.A., Redox-Activating Dip-Pen Nanolithography (RA-DPN) (2009) J. Am. Chem. Soc., 131, pp. 922-923
  • Piner, R.D., Zhu, J., Xu, F., Hong, S.H., Mirkin, C.A., "Dip-Pen" Nanolithography (1999) Science, 283, pp. 661-663
  • Xia, Y.N., Whitesides, G.M., Use of Controlled Reactive Spreading of Liquid Alkanethiol on the Surface of Gold to Modify the Size of Features Produced by Microcontact Printing (1995) J. Am. Chem. Soc., 117, pp. 3274-3275
  • Rozkiewicz, D.I., Janczewski, D., Verboom, W., Ravoo, B.J., Reinhoudt, D.N., "Click" Chemistry by Microcontact Printing (2006) Angew. Chem., Int. Ed., 45, pp. 5292-5296
  • Yu, X., Pham, J.T., Subramani, C., Creran, B., Yeh, Y.-C., Du, K., Patra, D., Rotello, V.M., Direct Patterning of Engineered Ionic Gold Nanoparticles via Nanoimprint Lithography (2012) Adv. Mater., 24, pp. 6330-6334
  • Li, Q., Zheng, J.W., Liu, Z.F., Site-Selective Assemblies of Gold Nanoparticles on an AFM Tip-Defined Silicon Template (2003) Langmuir, 19, pp. 166-171
  • Krämer, S., Fuierer, R.R., Gorman, C.B., Scanning Probe Lithography Using Self-Assembled Monolayers (2003) Chem. Rev., 103, pp. 4367-4418
  • Eigler, D.M., Schweizer, E.K., Positioning Single Atoms with a Scanning Tunnelling Microscope (1990) Nature, 344, pp. 524-526
  • Liu, S., Schmid, G., Maoz, R., Sagiv, J., Template Guided Self-Assembly of [Au55] Clusters on Nanolithographically Defined Monolayer Patterns (2002) Nano Lett., 2, pp. 1055-1060
  • Chowdhury, D., Maoz, R., Sagiv, J., Wetting Driven Self-Assembly as a New Approach to Template-Guided Fabrication of Metal Nanopatterns (2007) Nano Lett., 7, pp. 1770-1778
  • Zheng, H., Lee, I., Rubner, M.F., Hammond, P.T., Two Component Particle Arrays on Patterned Polyelectrolyte Multilayer Templates (2002) Adv. Mater., 14, pp. 569-572
  • Liu, S., Maoz, R., Sagiv, J., Planned Nanostructures of Colloidal Gold via Self-Assembly on Hierarchically Assembled Organic Bilayer Template Patterns with In-Situ Generated Terminal Amino Functionality (2004) Nano Lett., 4, pp. 845-851
  • Nyffenegger, R.M., Penner, R.M., Nanometer-Scale Surface Modification Using the Scanning Probe Microscope: Progress since 1991 (1997) Chem. Rev., 97, pp. 1195-1230
  • Zhao, J., Terfort, A., Zharnikov, M., Gold Nanoparticle Patterning on Monomolecular Chemical Templates Fabricated by Irradiation-Promoted Exchange Reaction (2011) J. Phys. Chem. C, 115, pp. 14058-14066
  • Mandler, D., Micro- and Nanopatterning Using the Scanning Electrochemical Microscope (2001) Scanning Electrochemical Microscopy, pp. 593-627. , In; Bard, A. J. Mirkin, M. V. Marcel Dekker: New York
  • Wittstock, G., Burchardt, M., Pust, S.E., Shen, Y., Zhao, C., Scanning Electrochemical Microscopy for Direct Imaging of Reaction Rates (2007) Angew. Chem., Int. Ed., 46, pp. 1584-1617
  • Hüisser, O.E., Craston, D.H., Bard, A.J., Scanning Electrochemical Microscopy: High-Resolution Deposition and Etching of Metals (1989) J. Electrochem. Soc., 136, pp. 3222-3229
  • Mandler, D., Bard, A.J., A New Approach to the High Resolution Electrodeposition of Metals via the Feedback Mode of the Scanning Electrochemical Microscope (1990) J. Electrochem. Soc., 137, pp. 1079-1086
  • Borgwarth, K., Heinze, J., Increasing the Resolution of the Scanning Electrochemical Microscope Using a Chemical Lens: Application to Silver Deposition (1999) J. Electrochem. Soc., 146, pp. 3285-3289
  • He, C., Borgwarth, K., Ricken, C., Ebling, D.G., Heinze, J., Scanning Electrochemical Microscopy: Study of Silver Deposition on Non-Conducting Substrates (1997) Electrochim. Acta, 42, pp. 3065-3073
  • Forouzan, F., Bard, A.J., Evidence for Faradaic Processes in Scanning Probe Microscopy on Mica in Humid Air (1997) J. Phys. Chem. B, 101, pp. 10876-10879
  • Meltzer, S., Mandler, D., Microwriting of Gold Patterns with the Scanning Electrochemical Microscope (1995) J. Electrochem. Soc., 142, pp. 82-L84
  • Turyan, I., Matsue, T., Mandler, D., Patterning and Characterization of Surfaces with Organic and Biological Molecules by the Scanning Electrochemical Microscope (2000) Anal. Chem., 72, pp. 3431-3435
  • Ammann, E., Mandler, D., Local Deposition of Gold on Silicon by the Scanning Electrochemical Microscope (2001) J. Electrochem. Soc., 148, pp. 533-C539
  • Sheffer, M., Mandler, D., Control of Locally Deposited Gold Nanoparticle on Polyaniline Films (2009) Electrochim. Acta, 54, pp. 2951-2956
  • Malel, E., Mandler, D., Localized Electroless Deposition of Gold Nanoparticles Using Scanning Electrochemical Microscopy Electrochemical/Chemical Deposition and Etching (2008) J. Electrochem. Soc., 155, pp. 459-D467
  • Meltzer, S., Mandler, D., Study of Silicon Etching in HBr Solutions Using a Scanning Electrochemical Microscope (1995) J. Chem. Soc., Faraday Trans., 91, pp. 1019-1024
  • Unwin, P.R., MacPherson, J.V., Martin, R.D., McConville, C.F., Scanning Electrochemical Microscopy as a Dynamic Probe of Metal Adsorption, Nucleation and Growth on Surfaces: Silver Deposition on Pyrite (1999) Localised In-Situ Methods for Investigating Electrochemical Interfaces, 9928, pp. 104-121. , In; Electrochemical Society Proceedings Vol. Taylor, S. R. Hillier, A. C. Seo, M. Electrochemical Society: Pennington, NJ
  • Malel, E., Colleran, J., Mandler, D., Studying the Localized Deposition of Ag Nanoparticles on Self-Assembled Monolayers by Scanning Electrochemical Microscopy (SECM) (2011) Electrochim. Acta, 56, pp. 6954-6961
  • De Abril, O., Mandler, D., Unwin, P.R., Local Cobalt Electrodeposition Using the Scanning Electrochemical Microscope (2004) Electrochem. Solid-State Lett., 7, pp. 71-C74
  • Li, F., Edwards, M., Guo, J., Unwin, P.R., Silver Particle Nucleation and Growth at Liquid/Liquid Interfaces: A Scanning Electrochemical Microscopy Approach (2009) J. Phys. Chem. C, 113, pp. 3553-3565
  • Yatziv, Y., Turyan, I., Mandler, D., A New Approach to Micropatterning: Application of Potential-Assisted Ion Transfer at the Liquid-Liquid Interface for the Local Metal Deposition (2002) J. Am. Chem. Soc., 124, pp. 5618-5619
  • Malel, E., Ludwig, R., Gorton, L., Mandler, D., Localized Deposition of Au Nanoparticles by Direct Electron Transfer Through Cellobiose Dehydrogenase (2010) Chem. - Eur. J., 16, pp. 11697-11706
  • O'Mullane, A.P., Ippolito, S.J., Bond, A.M., Bhargava, S.K., A Study of Localised Galvanic Replacement of Copper and Silver Films with Gold Using Scanning Electrochemical Microscopy (2010) Electrochem. Commun., 12, pp. 611-615
  • Combellas, C., Kanoufi, F., Mazouzi, D., Thiebault, A., Surface Modification of Halogenated Polymers: 5. Localized Electroless Deposition of Metals on Poly(tetrafluoroethylene) Surfaces (2003) J. Electroanal. Chem., 556, pp. 43-52
  • Cortes Salazar, F., Momotenko, D., Girault, H., Lesch, A., Wittstock, G., Seeing Big with Scanning Electrochemical Microscopy (2011) Anal. Chem., 83, pp. 1493-1499
  • Penner, R.M., Heben, M.J., Longin, T.L., Lewis, N.S., Fabrication and Use of Nanometer-Sized Electrodes in Electrochemistry (1990) Science, 250, pp. 1118-1121
  • Penner, R.M., Heben, M.J., Lewis, N.J., Preparation and Electrochemical Characterization of Conical and Hemispherical Ultramicroelectrodes (1989) Anal. Chem., 61, pp. 1630-1636
  • Slevin, C.J., Gray, N.J., MacPherson, J.V., Webb, M.A., Unwin, P.R., Fabrication and Characterisation of Nanometre-Sized Platinum Electrodes for Voltammetric Analysis and Imaging (1999) Electrochem. Commun., 1, pp. 282-288
  • MacPherson, J.V., Unwin, P.R., Combined Scanning Electrochemical-Atomic Force Microscopy (2000) Anal. Chem., 72, pp. 276-285
  • Conyers, Jr.J.L., White, H.S., Electrochemical Characterization of Electrodes with Submicrometer Dimensions (2000) Anal. Chem., 72, pp. 4441-4446
  • Llopis, J.F., Colom, F., (1976) Encyclopedia of Electrochemistry of the Elements, 6, pp. 224-226. , In; Bard, A. J. Marcel Dekker Inc. New York, Vol
  • Fang, Y., Leddy, J., Cyclic Voltammetric Responses for Inlaid Microdisks with Shields of Thickness Comparable to the Electrode Radius: A Simulation of Reversible Electrode Kinetics (1995) Anal. Chem., 67, pp. 1259-1270
  • Myland, J.C., Oldham, K.B., Diffusion-Limited Currents at Hemispheroidal Microelectrodes (1990) J. Electroanal. Chem., 288, pp. 1-14
  • Zoski, C.G., Mirkin, M.V., Steady-State Limiting Currents at Finite Conical Microelectrodes (2002) Anal. Chem., 74, pp. 1986-1992
  • Watkins, J.J., Chen, J.Y., White, H.S., Abruña, H.D., Maisonhaute, E., Amatore, C., Zeptomole Voltammetric Detection and Electron-Transfer Rate Measurements Using Platinum Electrodes of Nanometer Dimensions (2003) Anal. Chem., 75, pp. 3962-3971
  • Tel-Vered, R., Bard, A.J., Generation and Detection of Single Metal Nanoparticles Using Scanning Electrochemical Microscopy Techniques (2006) J. Phys. Chem. B, 110, pp. 25279-25287
  • Bobbert, P.A., Wind, M.M., Vlieger, J., (1987) Physica A, 146, p. 69
  • Cheh, H.Y., Electrodeposition of Gold by Pulsed Current (1971) J. Electrochem. Soc., 118, pp. 551-557
  • Segal, C.C., Chase, A.B., Young, A.M., High Field Pulse Plating: Gold on Platinum Electrodes (1992) J. Electrochem. Soc., 139, pp. 1580-1585
  • Kim, J., Shen, M., Nioradze, N., Amemiya, S., Stabilizing Nanometer Scale Tip-to-Substrate Gaps in Scanning Electrochemical Microscopy Using an Isothermal Chamber for Thermal Drift Suppression (2012) Anal. Chem., 84, pp. 3489-3492
  • Moheimani, S.O.R., Accurate and Fast Nanopositioning with Piezoelectric Tube Scanners: Emerging Trends and Future Challenges (2008) Rev. Sci. Instrum., 79, p. 071101
  • Marinello, F., Balcon, M., Schiavuta, P., Carmignato, S., Savio, E., Thermal Drift Study on Different Commercial Scanning Probe Microscopes during the Initial Warming-up Phase (2011) Meas. Sci. Technol., 22, p. 094016
  • Penner, R.M., Mesoscopic Metal Particles and Wires by Electrodeposition (2002) J. Phys. Chem. B, 106, pp. 3339-3353
  • Penner, R.M., Brownian Dynamics Simulations of the Growth of Metal Nanocrystal Ensembles on Electrode Surfaces in Solution: 2. The Effect of Deposition Rate on Particle Size Dispersion (2001) J. Phys. Chem. B, 105, pp. 8672-8678
  • Zoval, J.V., Lee, J., Gorer, S., Penner, R.M., Electrochemical Preparation of Platinum Nanocrystallites with Size Selectivity on Basal Plane Oriented Graphite Surfaces (1998) J. Phys. Chem. B, 102, pp. 1166-1175

Citas:

---------- APA ----------
Abad, J.M., Tesio, A.Y., Pariente, F. & Lorenzo, E. (2013) . Patterning gold nanoparticle using scanning electrochemical microscopy. Journal of Physical Chemistry C, 117(42), 22087-22093.
http://dx.doi.org/10.1021/jp406980b
---------- CHICAGO ----------
Abad, J.M., Tesio, A.Y., Pariente, F., Lorenzo, E. "Patterning gold nanoparticle using scanning electrochemical microscopy" . Journal of Physical Chemistry C 117, no. 42 (2013) : 22087-22093.
http://dx.doi.org/10.1021/jp406980b
---------- MLA ----------
Abad, J.M., Tesio, A.Y., Pariente, F., Lorenzo, E. "Patterning gold nanoparticle using scanning electrochemical microscopy" . Journal of Physical Chemistry C, vol. 117, no. 42, 2013, pp. 22087-22093.
http://dx.doi.org/10.1021/jp406980b
---------- VANCOUVER ----------
Abad, J.M., Tesio, A.Y., Pariente, F., Lorenzo, E. Patterning gold nanoparticle using scanning electrochemical microscopy. J. Phys. Chem. C. 2013;117(42):22087-22093.
http://dx.doi.org/10.1021/jp406980b