Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this work, we studied the distribution of V and Sb vacancies in the rutile-type vanadium antimonate phase and the influence of these cationic defects on the VSbO4(110) surface properties. We performed density functional theory (DFT) calculations to compute the energy stability of bulk supercells with different geometrical arrangements of the metal-cation-deficient sites. Then, we built a model of the nonstoichiometric VSbO4(110) surface, which exhibited an extra O layer and isolated V cations - V atoms surrounded by Sb ions - that could act as Lewis acid sites. The density of states (DOS) plot of this surface showed contributions of O(2p) states, coming from surface O atoms nearest-neighbor of a V vacancy, and V(3d) states near the Fermi level. We also studied the influence of cation-vacancies in the formation of Brønsted acid sites. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:The effect of metal-cation vacancies on vanadium antimonate surface properties. A theoretical study
Autor:Seitz, H.; Juan, A.; Brizuela, G.; Irigoyen, B.
Filiación:Departamento de Física, IFISUR (UNS-CONICET), Avda Alem 1253, B8000CPB Bahía Blanca, Argentina
Departamento de Ingeniería Química, Universidad de Buenos Aires, Pabellón de Industrias, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Cationic defects; Density of state; Energy stability; Geometrical arrangements; Nearest-neighbors; Non-stoichiometric; Theoretical study; Vanadium antimonate; Oxide minerals; Positive ions; Surface properties; Vanadium; Vacancies
Año:2013
Volumen:117
Número:40
Página de inicio:20548
Página de fin:20556
DOI: http://dx.doi.org/10.1021/jp4032805
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v117_n40_p20548_Seitz

Referencias:

  • Guerrero-Pérez, M.O., Janas, J., Machej, T., Haber, A., Lewandowska, A., García-Fierro, J., Bañares, M.A., Selective Destruction of Nitrogen-Containing Organic Volatile Compounds over Sb-V-O Catalysts (2007) Appl. Catal. B: Envirom., 71, pp. 85-93
  • Kim, B., Park, D., Kim, I., Woo, H., Selective Oxidation of Hydrogen Sulfide over Mixture Catalysts of V-Sb-O and Bi2O3 (2003) Catal. Today, 87, pp. 11-17
  • Li, K., Wu, K., Selective Oxidation of Hydrogen Sulfide to Sulfur on Vanadium-Based Catalysts Containing Tin and Antimony (2001) Ind. Eng. Chem. Res., 40, pp. 1052-1057
  • Zhang, H., Zhang, J., Sun, K., Feng, Z., Ying, P., Li, C., Catalytic Performance of the Sb-V Mixed Oxide on Sb-V-O/SiO2 Catalysts in Methane Selective Oxidation to Formaldehyde (2006) Catal. Lett., 106, pp. 89-93
  • Shishido, T., Inoue, A., Konishi, T., Matsuura, I., Takehira, K., Oxidation of Isobutane over Mo-V-Sb Mixed Oxide Catalyst (2000) Catal. Lett., 68, pp. 215-221
  • Guttmann, A., Grasselli, R.K., Brazdil, J.F., (1988), US Pat. 4, 746, 641, 4, 788, 317; Centi, G., Marchi, F., Perathoner, S., Effect of Ammonia Chemisorption on the Surface Reactivity of V-Sb-oxide Catalysts for Propane Ammoxidation (1997) Appl. Catal. A: General, 149, pp. 225-244
  • Guerrero-Pérez, M.O., Fierro, J.L.G., Vicente, M.A., Bañares, M.A., Effect of Sb/V Ratio and of Sb+V Coverage on the Molecular Structure and Activity of Alumina-Supported Sb-V-O Catalysts for the Ammoxidation of Propane to Acrylonitrile (2002) J. Catal., 206, pp. 339-348
  • Guerrero-Pérez, M.O., Fierro, J.L.G., Bañares, M.A., Effect of Synthesis Method on Stabilized Nano-Scaled Sb-V-O Catalysts for the Ammoxidation of Propane to Acrylonitrile (2006) Top. Catal., 41, pp. 43-53
  • Hamid, S., Centi, G., Pal, P., Derouane, E., Site Isolation and Cooperation Effects in the Ammoxidation of Propane with VSbO and Ga/H-ZSM-5 Catalysts (2001) Top. Catal., 15, pp. 161-168
  • Grasselli, R.K., Burrington, J.D., Buttrey, D.J., De Santo, P., Langmuir, C.G., Multifunctionality of Active Centers in (Amm)oxidation Catalysts: From Bi-Mo-Ox to Mo-V-Nb-(Te, Sb)-Ox (2003) Top. Catal., 23, pp. 5-22
  • Birchall, T., Sleight, A.E., Oxidation States in Vanadium Antimonate (VSbO4) (1976) Inorg. Chem., 15, pp. 868-870
  • Hansen, S., Stahl, K., Nilsson, R., Andersson, A., The Crystal Structure of Sb0.92V0.92O4, Determined by Neutron and Dual Wavelength X-ray Powder Diffraction (1993) J. Solid State Chem., 102, pp. 340-348
  • Rojas, E., Calatayud, M., Bañares, M.A., Guerrero-Pérez, M.O., Theoretical and Experimental Study of Light Hydrocarbon Ammoxidation and Oxidative Dehydrogenation on (110)-VSbO4 Surfaces (2012) J. Phys. Chem. C, 116, pp. 9132-9141
  • Larrondo, S., Irigoyen, B., Baronetti, G., Amadeo, N., Vanadium Antimonate as a Partial Oxidation Catalyst (2003) Appl. Catal. A: General, 250, pp. 279-285
  • Centi, G., Mazzoli, P., Structure-Activity Relationship in Sb-V-Oxide Catalysts for the Direct Synthesis of Acrylonitrile from Propane (1996) Catal. Today, 28, pp. 351-362
  • Andersson, A., Andersson, S.L.T., Centi, G., Grasselli, R.K., Sanati, M., Trifiro, F., Surface Characterization and Reactivity in Ammoxidation Reactions of Vanadium Antimonate Catalysts (1994) Appl. Catal., 113, pp. 43-57
  • Roussel, H., Mehlomakulu, B., Belhadj, F., Van Steen, E., Millet, J.M.M., Active Sites Characterization in Mixed Vanadium and Iron Antimonate Oxide Catalysts for Propane Ammoxidation (2002) J. Catal., 205, pp. 97-106
  • Irigoyen, B., Juan, A., Larrondo, S., Amadeo, N., Adsorption Reactions of Toluene on the (110) Vanadium Antimonate Oxide Surface (2001) J. Catal., 201, pp. 169-182
  • Irigoyen, B., Juan, A., Larrondo, S., Amadeo, N., The Adsorption of Toluene on V-Sb Oxides. Theoretical Aspects (2003) Surf. Sci., 523, pp. 252-266
  • Rojas, E., Calatayud, M., Guerrero-Pérez, M.O., Bañares, M.A., Correlation between Theoretical and Experimental Investigations of the Ammonia Adsorption Process on the (110)-VSbO4 Surface (2010) Catal. Today, 158, pp. 178-185
  • Messina, S., Juan, A., Larrondo, S., Irigoyen, B., Amadeo, N., Theoretical Study of the Influence of Cation Vacancies on the Catalytic Properties of Vanadium Antimonate (2008) Appl. Surf. Sci., 254, pp. 5837-5843
  • Fujita, H., Kanougi, T., Atoguchi, T., Distribution of Brønsted Acid Sites on Beta Zeolite H-BEA: A Periodic Density Functional Theory Calculation (2006) Appl. Catal. A: General, 313, pp. 160-166
  • Alberti, A., Location of Brønsted Sites in Mordenite (1997) Zeolites, 19, pp. 411-415
  • Soyer, S., Uzun, A., Senkan, S., Onal, I., A Quantum Chemical Study of Nitric Oxide Reduction by Ammonia (SCR Reaction) on V2O5 Catalyst Surface (2006) Catal. Today, 118, pp. 268-278
  • Kresse, G., Furthmüller, J., http://cms.mpi.univie.ac.at/vasp/vasp/vasp.html, (accessed Feb 2, 2013); Kresse, G., Furthmuller, J., Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set (1996) Comput. Mater. Sci., 6, pp. 15-50
  • Kresse, G., Hafner, J., Ab Initio Molecular Dynamics for Liquid Metals (1993) Phys. Rev. B, 47, pp. 558-561
  • Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J., Fiolhais, C., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation (1992) Phys. Rev. B, 46, pp. 6671-6687
  • Kresse, G., Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method (1999) Phys. Rev. B, 59, pp. 1758-1775
  • Monkhorst, H.J., Pack, J., Special Points for Brillouin-Zone Integrations (1976) Phys. Rev. B, 13, pp. 5188-5192
  • Hoffmann, R., (1988) Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, , VCH: New York
  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D., The SIESTA Method for ab Initio Order-N Materials Simulation (2002) J. Phys.: Condens. Matter, 14, p. 2745
  • Berry, F.J., Smart, L.E., Duhalde, S., Titanium-Substituted Vanadium and Iron Antimonates (1996) Polyhedron, 15, pp. 651-654
  • Centi, G., Mazzoli, P., Perathoner, S., Dependence of the Catalytic Behavior of v - Sb-Oxides in Propane Ammoxidation to Acrylonitrile from the Method of Preparation (1997) Appl. Catal., A, 165, pp. 273-290
  • Callahan, J.L., Grasselli, R.K., A Selectivity Factor in Vapor-Phase Hydrocarbon Oxidation Catalysis (1963) AIChE J., 9, pp. 755-760
  • Grasselli, R.K., (1997) Handbook of Heterogeneous Catalysis: Ammoxidation, 5, p. 2302. , Ertl, G. Knoezinger, H. Weitkamp, J. John Wiley and Sons: New York
  • Haras, A., Witko, M., Salahub, D.R., Hermann, K., Tokarz, R., Electronic Properties of the VO2 (011) Surface: Density Functional Cluster Calculations (2001) Surf. Sci., 491, pp. 77-87
  • Guelfucci, M.F., Electronic Calculations on Rutile VO2 by the LMTO-ASA Method (2001) J. Phys. Chem. Solids, 62, pp. 1961-1966
  • Wertheim, G.K., Campagna, M., Guggenheim, H.J., Remeika, J.P., Buchanan, D.N.E., X-ray Photoemission Study of Metal-Insulator Transitions in VO 2 V2O3 and NiS (1975) AIP Conf. Proc., 24, pp. 235-237
  • Mellan, T.A., Grau-Crespo, R., Density Functional Theory Study of Rutile VO2 Surfaces (2012) J. Chem. Phys., 137, p. 154706. , (1-8)
  • Centi, G., Marchi, F., Perathoner, S., Surface Chemistry of V-Sb-Oxide in Relation to the Mechanism of AcrylonitrileS from Propane. Part 2. Reactivity towards Ammonia and Relationship with Catalytic Behavior (1996) J. Chem. Soc. Faraday Trans., 92, pp. 5151-5159
  • Henkelman, G., Arnaldsson, A., Jonsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density (2006) Comput. Mater. Sci., 36, pp. 354-360
  • Grasselli, R.K., Advances and Future Trends in Selective Oxidation and Ammoxidation Catalysis (1999) Catal. Today, 49, pp. 141-153
  • Hammer, B., Wendt, S., Besenbacher, F., Water Adsorption on TiO2 (2010) Top. Catal., 53, pp. 423-430
  • Nisar, J., Araujo, C.M., Ahuja, R., Water Interaction with Native Defects on Rutile TiO2 Nanowire: Ab Initio Calculations (2011) Appl. Phys. Lett., 98, p. 083115. , (1-3)
  • Miao, M., Liu, Y., Wang, Q., Wu, T., Huang, L., Gubbins, K.E., Nardelli, M.B., Activation of Water on the TiO2 (110) Surface: The case of Ti Adatoms (2012) J. Chem. Phys., 136, p. 064703. , (1-5)
  • Lindan, P.J.D., Harrison, N.M., Gillan, M.J., Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface (1998) Phys. Rev. Lett., 80, pp. 762-765
  • Lindan, P.J.D., Zhang, C., Exothermic Water Dissociation on the Rutile TiO2(110) Surface (2005) Phys. Rev. B, 72, p. 075439. , (1-7)

Citas:

---------- APA ----------
Seitz, H., Juan, A., Brizuela, G. & Irigoyen, B. (2013) . The effect of metal-cation vacancies on vanadium antimonate surface properties. A theoretical study. Journal of Physical Chemistry C, 117(40), 20548-20556.
http://dx.doi.org/10.1021/jp4032805
---------- CHICAGO ----------
Seitz, H., Juan, A., Brizuela, G., Irigoyen, B. "The effect of metal-cation vacancies on vanadium antimonate surface properties. A theoretical study" . Journal of Physical Chemistry C 117, no. 40 (2013) : 20548-20556.
http://dx.doi.org/10.1021/jp4032805
---------- MLA ----------
Seitz, H., Juan, A., Brizuela, G., Irigoyen, B. "The effect of metal-cation vacancies on vanadium antimonate surface properties. A theoretical study" . Journal of Physical Chemistry C, vol. 117, no. 40, 2013, pp. 20548-20556.
http://dx.doi.org/10.1021/jp4032805
---------- VANCOUVER ----------
Seitz, H., Juan, A., Brizuela, G., Irigoyen, B. The effect of metal-cation vacancies on vanadium antimonate surface properties. A theoretical study. J. Phys. Chem. C. 2013;117(40):20548-20556.
http://dx.doi.org/10.1021/jp4032805