Artículo

Sánchez, V.M.; Martínez, E.D.; Martínez Ricci, M.L.; Troiani, H.; Soler-Illia, G.J.A.A. "Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study" (2013) Journal of Physical Chemistry C. 117(14):7246-7259
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Gold nanoparticles (NP) were synthesized inside ordered mesoporous TiO 2 thin films (MTTF) by stepwise reduction of AuCl4 - with NaBH4. This leads to an optical material (Au@TiO2) of interest for plasmonic applications. The films (pure titania or gold-titania nanocomposites) were thoroughly characterized by UV-visible and ellipsometry spectroscopies. The dielectric function of the MTTF, considered as the dielectric environment in which the NP are embedded, was acquired by ellipsometry and rationalized by the asymmetric Bruggeman model as an effective medium formed by the mixture of dense TiO2 and air. Nanocomposite Au@TiO2 systems present an isotropic dispersion of Au NP in the 5-8 nm range. The UV-visible spectra obtained with a low nanoparticle filling fraction of the pore volume (fNP < 2%) are accurately reproduced by both Maxwell-Garnett (MG) and Mie theories. Accurate and coincident values of fNP and NP size are obtained by this method. The dielectric function of Au NP used in this work was studied in detail; in particular, the interface damping parameter related to the NP/MTTF interface was determined by comparison with TEM microscopy. The potential of the ellipsometry technique to determine the material plasmonic response, and its correspondence with the UV-visible spectra, are discussed. This spectroscopy technique opens the possibility to study the plasmon response of the material to changes in the environment due to the presence of vapors, and other in situ experiments, as well as to provide nanostructural information of metallic nanoparticles (NP size, interparticle distance, number of NP) with well-defined spatial localization in a multilayered system. © 2013 American Chemical Society.

Registro:

Documento: Artículo
Título:Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study
Autor:Sánchez, V.M.; Martínez, E.D.; Martínez Ricci, M.L.; Troiani, H.; Soler-Illia, G.J.A.A.
Filiación:Gerencia Química, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. Gral. Paz 1499, (B1650KNA) San Martín, Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EHA, Buenos Aires, Argentina
INQUIMAE, CONICET, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Instituto Balseiro, San Carlos de Bariloche, 8400, Argentina
Palabras clave:Dielectric functions; In-situ experiments; Interparticle distances; Metallic nanoparticles; Multi-layered systems; Ordered mesoporous; Spatial localization; UV-Visible spectra; Dispersions; Ellipsometry; Gold alloys; Nanocomposites; Nanoparticles; Optical properties; Plasmons; Thin films; Titanium dioxide; Gold
Año:2013
Volumen:117
Número:14
Página de inicio:7246
Página de fin:7259
DOI: http://dx.doi.org/10.1021/jp3127847
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v117_n14_p7246_Sanchez

Referencias:

  • Chen, X., Mao, S.S., Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications (2007) Chem. Rev., 107, pp. 2891-2959
  • Diebold, U., The Surface Science of Titanium Dioxide (2003) Surf. Sci. Rep., 48, pp. 53-229
  • Kamat, P.V., TiO2 Nanostructures: Recent Physical Chemistry Advances (2012) J. Phys. Chem. C, 116, pp. 11849-11851
  • Grätzel, M., Sol-Gel Processed TiO2 Films for Photovoltaics Applications (2001) J. Sol-Gel Sci. Tech., 22 (12), pp. 7-13
  • Linsebigler, A.L., Lu, G., Yates, J.T., Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results (1995) Chem. Rev., 95, pp. 735-758
  • Mayer, K.M., Hafner, J.H., Localized Surface Plasmon Resonance Sensors (2011) Chem. Rev., 111, pp. 3828-3857
  • Domansky, K., Liu, J., Wang, L.Q., Engelhard, M.H., Baskaran, S., Chemical Sensors Based on Dielectric Response of Functionalized Mesoporous Silica Films (2001) J. Mater. Res., 16, pp. 2810-2816
  • Homola, J., Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species (2008) Chem. Rev., 108, pp. 462-493
  • Alivisatos, P., The Use of Nanocrystals in Biological Detection (2004) Nat. Biotechnol., 22, pp. 47-52
  • Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A., Nuzzo, R.G., Nanostructured Plasmonic Sensors (2008) Chem. Rev., 108, pp. 494-521
  • Halas, N.J., Lal, S., Chang, W.-S., Link, S., Nordlander, P., Plasmons in Strongly Coupled Metallic Nanostructures (2011) Chem. Rev., 111, pp. 3913-3961
  • Ko, H., Singamaneni, S., Tsukruk, V.V., Nanostructured Surfaces and Assemblies as SERS Media (2008) Small, 4, pp. 1576-1599
  • Lal, S., Grady, N.K., Kundu, J., Levin, C.S., De, J.B.L., Halas, N.J., Tailoring plasmonic substrates for surface enhanced spectroscopies (2008) Chem. Soc. Rev., 37, pp. 898-911
  • Chumanov, G., Sokolov, K., Gregory, B.W., Cotton, T.M., Nanostructured Surfaces and Assemblies as SERS Media (2002) J. Phys. Chem., 99, pp. 9466-9471
  • Aroca, R.F., Alvarez-Puebla, R.A., Pieczonka, N., Sanchez-Cortez, S., Garcia-Ramos, J.V., Surface-Enhanced Raman Scattering on Colloidal Nanostructures (2005) Adv. Colloid Interface Sci., 116, pp. 45-61
  • Mazurenka, M., Hamilton, S.M., Unwin, P.R., MacKenzie, S.R., In-Situ Measurement of Colloidal Gold Adsorption on Functionalized Silica Surfaces (2008) J. Phys. Chem. C, 112, pp. 6462-6468
  • Fuertes, M.C., Marchena, M., Marchi, M.C., Wolosiuk, A., Soler-Illia, G.J.A.A., Controlled Deposition of Silver Nanoparticles in Mesoporous Single- or Multilayer Thin Films: From Tuned Pore Filling to Selective Spatial Location of Nanometric Objects (2009) Small, 5 (2), pp. 272-280
  • Pérez, M.D., Otal, E., Bilmes, S.A., Soler-Illia, G.J.A.A., Crepaldi, E.L., Grosso, D., Sanchez, C., Growth of Gold Nanoparticle Arrays in TiO2 Mesoporous Matrixes (2004) Langmuir, 20, pp. 6879-6886
  • Martínez, E.D., Bellino, M.G., Soler-Illia, G.J.A.A., Patterned Production of Silver-Mesoporous Titania Nanocomposite Thin Films Using Lithography-Assisted Metal Reduction (2009) ACS Appl. Mater. Interf., 1, pp. 746-749
  • Martinez, E.D., Granja, L., Bellino, M.G., Soler-Illia, G.J.A.A., Electrical Conductivity in Patterned Silver-Mesoporous Titania Nanocomposite Thin Films: Towards Robust 3D Nano-Electrodes (2010) Phys. Chem. Chem. Phys., 12, pp. 14445-14448
  • Angelomé, P.C., Pastoriza-Santos, I., Pérez-Juste, J., Rodríguez-González, B., Zelcer, A., Soler-Illia, G.J.A.A., Liz-Marzán, L.M., Growth and Branching of Gold Nanoparticles Through Mesoporous Silica Thin Films (2012) Nanoscale, 4, pp. 931-939
  • Angelomé, P.C., Liz-Marzán, L.M., Monitoring Solvent Evaporation from Thin Films by Localized Surface Plasmon Resonance Shifts (2010) J. Phys. Chem. C, 114, pp. 18379-18383
  • Subramanian, V., Wolf, E.E., Kamat, P.V., Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration (2004) J. Am. Chem. Soc., 126 (15), pp. 4943-4950
  • Lee, J., Mubeen, S., Ji, X., Stucky, G.D., Moskovits, M., Plasmoni Photoanodes for Solar Water Splitting with Visible Light (2012) Nano Lett., 12, pp. 5014-5019
  • Atwater, H.A., Polman, A., Plasmonics for Improved Photovoltaic Devices (2010) Nature Mat., 9, pp. 205-213
  • Reineck, P., Lee, G.P., Brick, D., Karg, M., Mulvaney, P., Bach, U., A Solid-State Plasmonic Solar Cell Via Metal Nanoparticle Self-Assembly (2012) Adv. Mater., 24 (35), pp. 4750-4755
  • Li, X., Chen, G., Yang, L., Jin, J., Liu, J., Multifunctional Au-Coated TiO2 Nanotube Arrays as Recyclable SERS Substrates for Multifold Organic Pollutants Detection (2010) Adv. Func. Mat., 20, pp. 2815-2824
  • Rebrov, E.V., Berenguer-Murcia, A., Johnson, B.F.G., Schouten, J.C., Gold Supported on Mesoporous Titania Thin Films for Application in Microstructured Reactors in Low-Temperature Water-Gas Shift Reaction (2008) Catal. Today, 138, pp. 210-215
  • Li, H., Bian, Z., Zhu, J., Huo, Y., Li, H., Lu, Y., Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity (2007) J. Am. Chem. Soc., 129, pp. 4538-4539
  • Creighton, J.A., Eadont, D.G., Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements (1991) J. Chem. Soc. Faraday. Trans., 87, pp. 3881-3891
  • Haiss, W., Thanh, N.T.K., Aveyard, J., Fernig, D.G., Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra (2007) Anal. Chem., 79, pp. 4215-4221
  • Bhat, R.R., Genzer, J., Using Spectroscopic Ellipsometry for Quick Prediction of Number Density of Nanoparticles Bound to Non-Transparent Solid Surfaces (2005) Surf. Sci., 596, pp. 187-196
  • Losurdo, M., Bergmair, M., Bruno, G., Cattelan, D., Cobet, C., Martino, A., Fleischer, K., Galliet, M., Spectroscopic Ellipsometry and Polarimetry for Materials and Systems Analysis at the Nanometer Scale: State-of-the-Art, Potential and Perspectives (2009) J. Nanoparticle Res., 11 (7), pp. 1521-1554
  • Kürbitz, S., Postendorfer, J., Berg, K.J., Berg, G., Determination of Size and Concentration of Copper Nanoparticles Dispersed in Glasses Using Spectroscopic Ellipsometry (2001) Appl. Phys. B: Laser Opt., 73, pp. 333-337
  • Oates, T.W.H., Wormeester, H., Arwin, H., Characterization of Plasmonic Effects in Thin Films and Metamaterials Using Spectroscopic Ellipsometry (2011) Prog. Surg. Sci, 86, pp. 328-376
  • Zhang, Y., Yuwono, A.H., Li, J., Wang, J., Highly Dispersed Gold Nanoparticles Assembled in Mesoporous Titania Flms of Cubic Configuration (2008) Microporous Mesoporous Mater., 110, pp. 242-249
  • Mie, G., Contributions to the Optics of Turbid Media, Particularly of Colloidal Metal Solutions (1908) Ann. Physik, 25, pp. 377-445
  • Garnett, J.C.M., Colours in Metal Glasses and in Metallic Films (1904) Philos. Trans. R. Soc. Lond., 203, pp. 385-420
  • Sepúlveda, B., Angelomé, P.C., Lechuga, L.M., Liz-Marzán, L.M., LSPR-based Nanobiosensors (2009) Nano Today, 4, pp. 244-251
  • Gehan, H., Mangeney, C., Aubard, J., Lévi, G., Hohenau, A., Krenn, J.R., Lacaze, E., Félidj, N., Design and Optical Properties of Active Polymer-Coated Plasmonic Nanostructures (2011) J. Phys. Chem. Lett., 2, pp. 926-931
  • Soler-Illia, G.J.A.A., Sanchez, C., Lebeau, B., Patarin, J., Chemical Strategies to Design Textured Materials: From Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures (2002) Chem. Rev., 102, pp. 4093-4138
  • Crepaldi, E.L., Soler-Illia, G.J.A.A., Grosso, D., Cagnol, F., Ribot, F., Sanchez, C., Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2 (2003) J. Am. Chem. Soc., 125, pp. 9770-9786
  • Martínez Ricci, M.L., Fuertes, M.C., Violi, I.L., Grosso, D., Boissiere, C., Sanchez, C., Soler-Illia, G.J.A., A.Ordered Mesoporous Thin Films Through Fast Post-Synthetic Treatment, , Work in progress, provided as Reviewer-Only information
  • Boissiere, C., Grosso, D., Lepoutre, S., Nicole, L., Bruneau, A.B., Sanchez, C., Porosity and Mechanical Properties of Mesoporous Thin Films Assessed by Environmental Ellipsometric Porosimetry (2005) Langmuir, 21, pp. 12362-12371
  • Angelomé, P.C., Fuertes, M.C., Soler-Illia, G.J.A.A., Multifunctional, Multilayer, Multiscale: Integrative Synthesis of Complex Macroporous and Mesoporous Thin Films with Spatial Separation of Porosity and Function (2006) Adv. Mater., 18, pp. 2397-2402
  • Thompkins, H.G., McGahan, W.A., (1999) Spectroscopic Ellipsometry and Reflectometry, , Wiley: New York
  • Bass, M., Mahajan, V.N., Van Stryland, E., (2009) Handbook of Optics: Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry, 4. , McGraw-Hill Professional: Columbus, OH
  • Oates, T.W.H., Real Time Spectroscopic Ellipsometry of Nanoparticle Growth (2006) Appl. Phys. Lett., 88, pp. 2006-2008
  • Bass, J., Grosso, D., Boissiere, C., Sanchez, C., Pyrolysis, Crystallization, and Sintering of Mesostructured Titania Thin Films Assessed by in Situ Thermal Ellipsometry (2008) J. Am. Chem. Soc., 3, pp. 787-792
  • Angelome, P.C., Andrini, L., Calvo, M.E., Requejo, F.G., Bilmes, S.A., Soler-Illia, G.J.A.A., Mesoporous Anatase TiO2 Films: Use of Ti K XANES for the Quantification of the Nanocrystalline Character and Substrate Effects in the Photocatalysis Behavior (2007) J. Phys. Chem. C., 111, pp. 10886-10893
  • Violi, I.L., Perez, M.D., Fuertes, M.C., Soler-Illia, G.J.A.A., Highly Ordered, Accessible and Nanocrystalline Mesoporous TiO2 Thin Films on Transparent Conductive Substrates (2012) ACS Appl. Mater. Interfaces, 4, pp. 4320-4330
  • Soler-Illia, G.J.A.A., Angelomé, P.C., Fuertes, M.C., Grosso, D., Boissiere, C., Critical Aspects in the Production of Periodically Ordered Mesoporous Titania Thin Films (2012) Nanoscale, 4, pp. 2549-2566
  • Kreibig, U., Vollmer, M., (1995) Optical Properties of Metal Clusters, , Springer: New York
  • Lin, Q., Sun, Z., Study on Optical Properties of Aggregated Ultra-Small Metal Nanoparticles (2011) Optik, 122, pp. 1031-1036
  • Jain, P.K., Huang, W., El-Sayed, M.A., On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation (2007) NanoLetters, 7, pp. 2080-2088
  • Liu, Z., Wang, H., Li, H., Wang, X., Red Shift of Plasmon Resonance Frequency Due to the Interacting Ag Nanoparticles Embedded in Single Crystal SiO2 by Implantation (1998) Appl. Phys. Lett., 72, pp. 1823-1825
  • Ung, T., Liz-Marzán, L.M., Mulvaney, P., Optical Properties of Thin Films of Au@SiO2 Particles (2001) J. Phys. Chem. B, 105, pp. 3441-3452
  • Dalacu, D., Martinu, L., Spectroellipsometric Characterization of Plasma-Deposited Au/SiO 2 Nanocomposite Films (2000) J. Appl. Phys., 87, pp. 228-235
  • Hutchinson, N.J., Coquil, T., Navid, A., Pilon, L., Effective Optical Properties of Highly Ordered Mesoporous Thin Films (2010) Thin Solid Films, 518, pp. 2141-2146
  • Sihvola, A., (1999) Electromagnetic Mixing Formulas and Applications, IEE Electromagnetic Waves Series, 47. , The Institution of Electrical Engineers: London
  • Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles (1996) Langmuir, 12, pp. 788-800
  • Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C., The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment (2003) J. Phys. Chem. B, 107, pp. 668-677
  • Jensen, T.R., Duval, M.L., Kelly, K.L., Lazarides, A.A., Schatz, G.C., Van Duyne, R.P., Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles (1999) J. Phys. Chem. B, 103, pp. 9846-9853
  • Jain, P.K., El-Sayed, M.A., Plasmonic Coupling in Noble Metal Nanostructures (2010) Chem. Phys. Lett., 487, pp. 153-164
  • Lee, K.-S., El-Sayed, M.A., Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition (2006) J. Phys. Chem. B, 110, pp. 19220-19225
  • Noguez, C.J., Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment (2007) J. Phys. Chem. C., 111, pp. 3806-3819
  • Link, S., El-Sayed, M.A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods (1999) J. Phys. Chem. B, 103, pp. 8410-8426
  • Prodan, E., Nordlander, P., Plasmon Hybridization in Spherical Nanoparticles (2004) J. Chem. Phys., 120, pp. 5444-5454
  • Wang, J., Lau, W., Li Q, M., Effects of Particle Size and Spacing on the Optical Properties of Gold Nanocrystals in Alumina (2005) J. Appl. Phys., 97, pp. 114303-114308
  • Lermé, J., Size Evolution of the Surface Plasmon Resonance Damping in Silver Nanoparticles: Confinement and Dielectric Effects (2011) J. Phys. Chem. C., 115, pp. 14098-14110
  • Yang, P., Portalès, H., Pileni, M.-P., Dependence of the Localized Surface Plasmon Resonance of Noble Metal Quasispherical Nanoparticles on Their Crystallinity-Related Morphologies (2011) J. Chem. Phys., 134, p. 24507
  • Hövel, H., Fritz, S., Hilger, A., Kreibig, U., Vollmer, M., With of Cluster Plasmon Resonances: Bulk Dielectric Functions and Chemical Interface Damping (1993) J. Am. Phys. Soc., 48, pp. 18178-18187
  • Garcia, M.A., Surface Plasmons in Metallic Nanoparticles: Fundamentals and Applications (2011) J. Phys. D: Appl. Phys., 44, p. 283001
  • Hilger, A., Tenfelde, M., Kreibig, U., Silver Nanoparticles Deposited on Dielectric Surfaces (2001) Appl. Phys. B: Laser Opt., 73, pp. 361-372
  • Palik, E.D., (1998) Handbook of Optical Constant of Solids, , Academic Press: New York
  • Johnson, P.B., Christy, R.W., Optical Constants of the Noble Metals (1972) Phys. Rev. B., 6, pp. 4370-4379
  • Maier, S.A., (2007) Plasmonics: Fundamentals and Applications, , Springer: New York
  • Bahadur, N., Jain, K., Pasricha, R., Govind, Chandet, S., Selective Gas Sensing Response from Different Loading of Ag in Sol-Gel Mesoporous Titania Powders (2011) Sens. Actuators, B, 159, pp. 112-120
  • Calvo, A., Fuertes, M.C., Yameen, B., Williams, F.J., Azzaroni, O., Soler-Illia, G.J.A.A., Nanochemistry in Confined Environments: Polyelectrolyte Brush-Assisted Synthesis of Gold Nanoparticles Inside Ordered Mesoporous Thin Films (2010) Langmuir, 26, pp. 5559-5567
  • Polder, D., Van Santen, J.H., The Effective Permeability of Mixtures of Solids (1946) Physica, 12, pp. 257-271
  • García, A., Llopis, J., Paje, E., A Simple Model for Evaluating the Optical Absorption Spectrum from Small Au-Colloids in Sol-Gel films (1999) Chem. Phys. Lett., 315, pp. 313-320
  • Schinca, D.C., Scaffardi, L.B., Videla, F.A., Torchia, G.A., Moreno, P., Roso, L., Silver-Silver Oxide Core-Shell Nanoparticles by Femtosecond Laser Ablation: Core and Shell Sizing by Extinction Spectroscopy (2009) J. Phys. D: Appl. Phys., 42, p. 215102

Citas:

---------- APA ----------
Sánchez, V.M., Martínez, E.D., Martínez Ricci, M.L., Troiani, H. & Soler-Illia, G.J.A.A. (2013) . Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study. Journal of Physical Chemistry C, 117(14), 7246-7259.
http://dx.doi.org/10.1021/jp3127847
---------- CHICAGO ----------
Sánchez, V.M., Martínez, E.D., Martínez Ricci, M.L., Troiani, H., Soler-Illia, G.J.A.A. "Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study" . Journal of Physical Chemistry C 117, no. 14 (2013) : 7246-7259.
http://dx.doi.org/10.1021/jp3127847
---------- MLA ----------
Sánchez, V.M., Martínez, E.D., Martínez Ricci, M.L., Troiani, H., Soler-Illia, G.J.A.A. "Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study" . Journal of Physical Chemistry C, vol. 117, no. 14, 2013, pp. 7246-7259.
http://dx.doi.org/10.1021/jp3127847
---------- VANCOUVER ----------
Sánchez, V.M., Martínez, E.D., Martínez Ricci, M.L., Troiani, H., Soler-Illia, G.J.A.A. Optical properties of Au nanoparticles included in mesoporous TiO 2 thin films: A dual experimental and modeling study. J. Phys. Chem. C. 2013;117(14):7246-7259.
http://dx.doi.org/10.1021/jp3127847