Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We extend our previous molecular dynamics analysis of confined aqueous electrolytes within cylindrical hydrophobic pores of nanometric dimensions [Videla et al. J. Chem. Phys.2011, 135, 104503] to the case of room temperature ionic liquid (RTIL) solutions, with concentrations close to c ∼ 1 M. Equilibrium and dynamical characteristics of two imidazolium-based RTILs, differing in the hydrophobicity of the corresponding anionic species, were considered. The solutions within the pore were modeled in contact with "bulk-like" reservoirs, which served as reference systems to gauge the magnitude of the modifications observed in the global densities and in the transport coefficients. The density fields associated to the ionic species present a marked enhancement near the pore walls; this leads to increments of the global RTIL concentration within the pores, which are intermediate between 2 and 3 times the ones observed in the bulk reservoirs. These modifications are more marked in solutions containing more hydrophobic anionic species. In both cases, selective adsorption of imidazolium groups at the pore walls prevails; these wall-solvation states are characterized by a parallel orientation of the imidazolium ring, with respect to the pore surface. Mass and charge transport were also investigated. The segregation of the ionic species towards the pore wall promotes a sharp drop in the individual ionic diffusion coefficients. Nonuniform trends in the modifications of the ionic conductivity were found. Our results show that charge transport is the result of a complex interplay between competing effects involving modifications in the local concentrations, retardations in the ionic mobility, and dynamical cross-correlations, as well. A physical interpretation of the latter effects is provided in terms of the differences in the spatial correlations of the ionic species within the interior of the pore. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Ionic liquid aqueous solutions under nanoconfinement
Autor:Rodriguez, J.; Elola, M.D.; Laria, D.
Filiación:Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica, Avenida Libertador 8250, 1429 Buenos Aires, Argentina
ECyT, UNSAM, Martín de Irigoyen 3100, 1650, San Martín, Provincia de Buenos Aires, Argentina
Departamento de Quimica Inorganica Analitica y Quimica-Fisica e INQUIMAe, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Anionic species; Aqueous electrolyte; Bulk-like; Competing effects; Cross-correlations; Density fields; Dynamical characteristics; Hydrophobic pore; Imidazolium; Imidazolium ring; Ionic diffusion; Ionic mobility; Ionic species; Nanoconfinements; Nanometric dimensions; Nonuniform; Parallel orientation; Physical interpretation; Pore surface; Pore wall; Reference systems; Room temperature ionic liquids; Selective adsorption; Spatial correlations; Transport coefficient; Adsorption; Ionic liquids; Ions; Molecular dynamics; Pore pressure; Quay walls; Hydrophobicity
Año:2012
Volumen:116
Número:9
Página de inicio:5394
Página de fin:5400
DOI: http://dx.doi.org/10.1021/jp211101a
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v116_n9_p5394_Rodriguez

Referencias:

  • Anthony, J.L., Maginn, E.J., Brennecke, J.F., (2001) J. Phys. Chem. B, 105, pp. 10942-19049
  • Takamuku, T., Kyoshoin, Y., Shimonura, T., Kittaka, S., Yamaguchi, T., (2009) J. Phys. Chem. B, 113, pp. 10817-10824
  • Méndez-Morales, T., Carrete, J., Cabeza, O., Gallego, L.J., Varela, L.M., (2011) J. Phys. Chem. B, 115, pp. 6995-7008
  • Cammarata, L., Kazarian, S.G., Salter, P.A., Welton, T., (2001) Phys. Chem. Chem. Phys., 3, pp. 5192-5200
  • Hanke, C.G., Lynden-Bell, R.M., (2003) J. Phys. Chem. B, 107, pp. 10873-10878
  • Sun, B., Jin, Q., Tan, L., Wu, P., Yan, F., (2008) J. Phys. Chem. B, 112, pp. 14251-14259
  • Spickermann, C., Thar, J., Lehmann, S.B.C., Zahn, S., Hunger, J., Buchner, R., Hunt, P.A., Kirchner, B., (2008) J. Chem. Phys., 129, p. 104505
  • Moreno, M., Catiglione, F., Mele, A., Pasqui, C., Raos, G., (2008) J. Phys. Chem. B, 112, pp. 7826-7836
  • Wang, H., Wang, J., Zhang, S., Xuan, X., (2008) J. Phys. Chem. B, 112, pp. 16682-16689
  • Schröder, G., Neumayr, G., Steinhauser, O., (2009) J. Chem. Phys., 130, p. 194503
  • Jian, W., Wang, Y., Voth, G.A., (2007) J. Phys. Chem. B, 111, pp. 4812-4818
  • Feng, S., Voth, G.A., (2010) Fluid Phase Equilib., 294, pp. 148-156
  • Bhargava, B.L., Klein, M.L., (2009) J. Phys. Chem. B, 113, pp. 9499-9505
  • Auczak, J., Hupka, H., Thöming, J., Jungnickel, C., (2008) Colloids Surf., A, 329, pp. 125-133
  • Singh, T., Kumar, A., (2007) J. Phys. Chem. B, 111, pp. 7843-7851
  • Dong, B., Zhao, X., Zheng, L., Zhang, J., Li, N., Ionue, T., (2008) Colloids Surf., A, 317, pp. 666-672
  • Du -. F, Y., Xiao -. X, H., Li -. G, K., (2007) J. Chromatogr. A, 1140, pp. 56-62
  • Huddleston, J.G., Willauer, H.D., Swatloski, R.P., Visser, A.E., Rogers, R.D., (1998) Chem. Commun., 44, pp. 1765-1766
  • Zhao, X., Gu, Y., Li, J., Ding, H., Shan, Y., (2008) Catal. Commun., 9, pp. 2179-2182
  • Yokozeki, A., Shiflett, M.B., (2010) Ind. Eng. Chem. Res., 49, pp. 9496-9503
  • Chaumont, A., Schurhammer, R., Wipff, G., (2005) J. Phys. Chem. B, 109, pp. 18964-18973
  • Chevrot, G., Schurhammer, R., Wipff, G., (2006) Phys. Chem. Chem. Phys., 8, pp. 4166-4174
  • Lynden-Bell, R.M., Del Pópolo, M., (2006) Phys. Chem. Chem. Phys., 8, pp. 949-954
  • Picálek, J., Minofar, B., Kolafa, J., Jungwirth, P., (2008) Phys. Chem. Chem. Phys., 10, pp. 5765-5775
  • Rivera-Rubero, S., Baldelli, S., (2004) J. Am. Chem. Soc., 126, pp. 11788-11789
  • Baldelli, S., (2003) J. Phys. Chem. B, 107, pp. 6148-6152
  • Rivera-Rubero, S., Baldelli, S., (2006) J. Phys. Chem. B, 110, pp. 15499-15505
  • Gómez, E., González, B., Domínguez, A., Tojo, E., Tojo, J., (2006) J. Chem. Eng. Data, 51, pp. 696-701
  • English, N.J., Mooney, D.A., O'Brien, S.W., (2010) J. Mol. Liq., 157, pp. 163-167
  • Gu, Y., Ogawa, C., Mori, J., Kobayashi, S., (2006) Angew. Chem., Int. Ed., 45, pp. 7217-2220
  • Gu, Y., Ogawa, C., Kobayashi, S., (2007) Org. Lett., 9, pp. 175-178
  • Pinilla, C., Del Pópolo, M.G., Lynden-Bell, R.M., Kohanoff, J., (2005) J. Chem. Phys. B, 109, pp. 17922-17927
  • Pinilla, C., Del Pópolo, M.G., Kohanoff, J., Lynden-Bell, R.M., (2007) J. Phys. Chem. B, 111, pp. 4877-4884
  • Singh, M.P., Singh, R.K., Chandra, S., (2011) J. Phys. Chem. B, 115, pp. 7505-7514
  • Coasne, B., Viau, L., Voux, A., (2011) J. Phys. Chem. Lett., 2, pp. 1150-1154
  • Iacob, C., Sangoro, J.R., Papadopoulos, P., Schuber, T., Naumov, S., Valiullin, R., Kärger, J., Kremer, F., (2010) Phys. Chem. Chem. Phys., 12, pp. 13798-13803
  • Videla, P.E., Sala, J., Martí, J., Guàrdia, E., Laria, D., (2011) J. Chem. Phys., 135, p. 104503
  • Morales, C.M., Thompson, W.H., (2009) J. Phys. Chem. A, 113, pp. 1922-1933
  • Gulmen, T.S., Thompson, W.H., (2006) Mater. Res. Soc. Symp. Proc., 889 E. , 0899-N06-05.1.10
  • Yang, Q., Zhang, H., Su, B., Yang, Y., Ren, Q., Xing, H., (2010) J. Chem. Eng. Data, 55, pp. 1745-1749
  • Zhou, Q., Wang, L.-S., (2006) J. Chem. Eng. Data, 51, pp. 905-908
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., (2005) J. Comput. Chem., 26, pp. 1781-1802
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., (1987) J. Phys. Chem., 91, pp. 6269-6271
  • Liu, Z., Huang, S., Wang, W., (2004) J. Phys. Chem. B, 108, pp. 12978-12989
  • Siqueira, L.J.A., Ribeiro, M.C.C., (2007) J. Phys. Chem. B, 111, pp. 11776-11785
  • Lynden-Bell, R.M., Youngs, T.G.A., (2009) J. Phys.: Condens. Matter, 21, p. 424120
  • Liu, Z.P., Chen, T., Bell, A., Smit, B., (2010) J. Phys. Chem. B, 114, pp. 4572-4582
  • Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G., (1995) J. Chem. Phys., 103, pp. 8577-8593
  • Sarraute, S., Costa Gomes, M.F., Pádua, A.A.H., (2009) J. Chem. Eng. Data, 54, pp. 2389-2394
  • Rilo, E., Vila, J., Pico, J., García-Garabal, S., Segade, L., Varela, L.M., Cabeza, O., (2010) J. Chem. Eng. Data, 55, pp. 639-644
  • Hansen -. J, P., McDonald, I., (2006) Theory of Simple Liquids, , Academic Press: Amsterdam, Chapter 10
  • Kashyap, H.K., Annapureddy, H.V.R., Raineri, F.O., Margulis, C.J., (2011) J. Phys. Chem. B, 115, pp. 13212-13221
  • Trullàs, J., Padró, J.A., (1997) Phys. Rev. B, 55, pp. 12210-12217
  • Trullàs, J., Alcaraz, O., González, L.E., Silbert, M., (2003) J. Phys. Chem. B, 107, pp. 282-290
  • Tasseven, C., Trullàs, J., Alcaraz, O., Silbert, M., Giró, A., (1997) J. Chem. Phys., 106, pp. 7286-7294
  • Yamaguchi, T., Nagao, A., Matsuoka, T., Koda, S., (2003) J. Chem. Phys., 119, pp. 11306-11317
  • Rodriguez, J., Elola, M.D., Laria, D., (2009) J. Phys. Chem. B, 113, pp. 12744-12749
  • Chandler, D., (2005) Nature, 437, pp. 640-647

Citas:

---------- APA ----------
Rodriguez, J., Elola, M.D. & Laria, D. (2012) . Ionic liquid aqueous solutions under nanoconfinement. Journal of Physical Chemistry C, 116(9), 5394-5400.
http://dx.doi.org/10.1021/jp211101a
---------- CHICAGO ----------
Rodriguez, J., Elola, M.D., Laria, D. "Ionic liquid aqueous solutions under nanoconfinement" . Journal of Physical Chemistry C 116, no. 9 (2012) : 5394-5400.
http://dx.doi.org/10.1021/jp211101a
---------- MLA ----------
Rodriguez, J., Elola, M.D., Laria, D. "Ionic liquid aqueous solutions under nanoconfinement" . Journal of Physical Chemistry C, vol. 116, no. 9, 2012, pp. 5394-5400.
http://dx.doi.org/10.1021/jp211101a
---------- VANCOUVER ----------
Rodriguez, J., Elola, M.D., Laria, D. Ionic liquid aqueous solutions under nanoconfinement. J. Phys. Chem. C. 2012;116(9):5394-5400.
http://dx.doi.org/10.1021/jp211101a