Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Nanoparticles of PtRu supported on mesoporous carbon were obtained by the impregnation and reduction method with NaBH 4. The high-surface-area mesoporous carbon was obtained by carbonization of a resorcinol-formaldehyde polymer with a cationic polyelectrolyte as a soft template. Surface characterization performed by transmission electron microscopy and powder X-ray diffraction showed a homogeneous distribution and high dispersion of metal particles. The PtRu catalyst shows an electrochemical active surface area, determined by CO stripping, 45% higher than PtRu catalyst synthesized by the same method on Vulcan. This translated in a 25% increase in the methanol oxidation current as well as a lower poisoning rate and higher turnover frequency, as was assessed by cyclic voltammetry and chronoamperometry. Differential electrochemical mass spectroscopy indicated an 8% higher conversion efficiency of methanol to CO 2, demonstrating the benefits of using a mesoporous carbon as catalyst support. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Electrochemical characterization of PtRu nanoparticles supported on mesoporous carbon for methanol electrooxidation
Autor:Viva, F.A.; Bruno, M.M.; Jobbágy, M.; Corti, H.R.
Filiación:Grupo Celdas de Combustible, Departamento de Física de la Materia Condensada, Comisión Nacional de Energía Atómica (CNEA), Av General Paz 1499 (1650), San Martín, Buenos Aires, Argentina
Escuela de Ciencia y Tecnología, Universidad de Gral. San Martín, Martin de Irigoyen 3100 (1650), San Martín, Buenos Aires, Argentina
Instituto de Química Física de Los Materiales, Medio Ambiente y Energía, Universidad de Buenos Aires - CONICET, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
Palabras clave:Cationic polyelectrolyte; CO stripping; Differential electrochemical mass spectroscopies; Electrochemical active surface areas; Electrochemical characterizations; High dispersion; Homogeneous distribution; Mesoporous carbon; Metal particle; Methanol electrooxidation; Methanol oxidation currents; Powder X ray diffraction; Pt-Ru catalysts; Pt-Ru nanoparticles; Reduction method; Resorcinol formaldehydes; Soft template; Surface characterization; Turnover frequency; Carbon dioxide; Carbonization; Catalysts; Chronoamperometry; Conversion efficiency; Cyclic voltammetry; Electrooxidation; Mass spectrometry; Mesoporous materials; Methanol; Phenols; Platinum alloys; Transmission electron microscopy; X ray diffraction; Carbon
Año:2012
Volumen:116
Número:6
Página de inicio:4097
Página de fin:4104
DOI: http://dx.doi.org/10.1021/jp209549g
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v116_n6_p4097_Viva

Referencias:

  • Gasteiger, H.A., Markovic, N., Ross, P.N., Cairns, E.J., (1993) J. Phys. Chem., 97, pp. 12020-12029
  • Markovic, N.M., Ross, P.N., (2002) Surf. Sci. Rep., 45, pp. 121-229
  • Parsons, R., Vandernoot, T., (1988) J. Electroanal. Chem., 257, pp. 9-45
  • Jansen, M.M.P., Moolhuysen, J., (1976) Electrochim. Acta, 21, pp. 869-878
  • Surampudi, S., Narayanan, S.R., Vamos, E., Frank, H., Halpert, G., Laconti, A., Kosek, J., Olah, G.A., (1994) J. Power Sources, 47, pp. 377-385
  • Carrette, L., Friedrich, K.A., Stimming, U., (2000) Chem. Phys. Chem., 1, pp. 162-193
  • Auer, E., Freund, A., Pietsch, J., Tacke, T., (1998) Appl. Catal., A, 173, pp. 259-271
  • Pantea, D., Darmstadt, H., Kaliaguine, S., Roy, C., (2003) Appl. Surf. Sci., 271, pp. 181-193
  • Lizcano-Valbuena, W.H., De Azevedo, D.C., Gonzalez, E.R., (2004) Electrochim. Acta, 49, pp. 1289-1295
  • Liu, H., Song, C., Zhang, L., Zhang, J., Wang, H., Wilkinson, D., (2006) J. Power Sources, 155, pp. 95-110
  • Cui, Z., Liu, C., Liao, J., Xing, W., (2008) Electrochim. Acta, 53, pp. 7807-7811
  • Figueiredo, J., Pereira, M., Serp, P., Kalck, P., Samant, P., Fernandes, J., (2006) Carbon, 44, pp. 2516-2522
  • Zhou, W.J., Li, W.Z., Song, S.Q., Zhou, Z.H., Jiang, L.H., Sun, G.Q., Xin, Q., Tsiakaras, P., (2004) J. Power Sources, 131, pp. 217-223
  • Gómez De La Fuente, J.L., Martinez-Huerta, M.V., Rojas, S., Terreros, P., Fierro, J.L.G., Pena, M.A., (2006) Catal. Today, 116, pp. 422-432
  • Rao, V., Simonov, P., Savinova, E., Plaksin, G., Cherepanova, S., Kryukova, G., Stimming, U., (2005) J. Power Sources, 145, pp. 178-187
  • Arbizzani, C., Beninati, S., Soavi, F., Varzi, A., Mastragostino, M., (2008) J. Power Sources, 185, pp. 615-620
  • Kim, H., You, D., Yoon, H., Joo, S., Pak, C., Chang, H., Song, I., (2008) J. Power Sources, 180, pp. 724-732
  • Hepel, M., Dela, I., Hepel, T., Luo, J., Zhong, C.J., (2007) Electrochim. Acta, 52, pp. 5529-5547
  • Calvillo, L., Lázaro, M.J., García-Bordejé, E., Moliner, R., Cabot, P.L., Esparbé, I., Pastor, E., Quintana, J.J., (2007) J. Power Sources, 169, pp. 59-54
  • Joo, S.H., Lee, H.I., You, D.J., Kwon, K., Kim, J.H., Choi, Y.S., Kang, M., Seung, D., (2008) Carbon, 46, pp. 2034-2045
  • Joo, S.H., Pak, C., You, D.J., Lee, S.-A., Lee, H.I., Kim, J.M., Chang, H., Seung, D., (2006) Electrochim. Acta, 52, pp. 1618-1626
  • Lei, Z., Bai, S., Xiao, Y., Dang, L., An, L., Zhang, G., Xu, Q., (2008) J. Phys. Chem. C, 112, pp. 722-731
  • Liu, S.H., Yu, W.Y., Chen, C.H., Lo, A.Y., Hwang, B.J., Chien, S.H., Liu, S.B., (2008) Chem. Mater., 20, pp. 1622-1628
  • Nam, J.-H., Jang, Y.-Y., Kwon, Y.-U., Nam, J.-D., (2004) Electrochem. Commun., 6, pp. 737-741
  • Zhou, J.H., He, J.P., Ji, Y.J., Dang, W.J., Liu, X.L., Zhao, G.W., Zhang, C.X., Hu, H.P., (2007) Electrochem. Solid-State Lett., 10, pp. 191-195
  • Ding, J., Chana, K.Y., Rena, J., Xiao, F.S., (2005) Electrochim. Acta, 50, pp. 3131-3141
  • Sahu, A.K., Sridhar, P., Pitchumani, S., (2009) J. Indian Inst. Sci., 89, pp. 437-445
  • Bruno, M.M., Franceschini, E.A., Planes, G.A., Corti, H.R., (2010) J. Appl. Electrochem., 40, pp. 257-263
  • Gierszal, K.P., Kim, T.W., Ryoo, R., Jaroniec, M., (2005) J. Phys. Chem. B, 109, pp. 23263-23268
  • Jin, J., Nishiyama, N., Egashira, Y., Ueyama, K., (2009) Microporous Mesoporous Mater., 118, pp. 218-223
  • Wan, Y., Shi, Y., Zhao, D., (2008) Chem. Mater., 20, pp. 932-945
  • Lin, M.L., Lo, M.Y., Mou, C.Y., (2009) J. Phys. Chem. C, 113, pp. 16158-16168
  • Bruno, M.M., Cotella, N.G., Miras, M.C., Koch, T., Seidler, S., Barbero, C., (2010) Colloids Surf., A, 358, pp. 13-20
  • Bruno, M.M., Cotella, N.G., Miras, M.C., Barbero, C., (2010) Colloids Surf., A, 362, pp. 28-32
  • Bruno, M.M., Corti, H.R., Balach, J., Cotella, G.N., Barbero, C.A., (2009) Funct. Mater. Lett., 2, pp. 135-138
  • Hutson, N.D., Yang, R.T., (1997) Adsorption, 3, pp. 189-195
  • Planes, G., Garcia, G., Pastor, E., (2007) Electrochem. Commun., 9, pp. 839-844
  • Wang, H., Alden, L., Disalvo, F.J., Abruña, H.D., (2008) Phys. Chem. Chem. Phys., 10, pp. 3739-3751
  • Sing, K.S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, T., Siemieniewska, T., (1985) Pure Appl. Chem., 57, pp. 603-619
  • Rouquerol, F., Rouquerol, J., Sing, K., (1999) Adsorption by Powders and Porous Solids, , Academic Press: San Diego
  • Gavalda, S., Gubbins, K.E., Hanzawa, Y., Kaneko, K., Thomson, K.T., (2002) Langmuir, 18, pp. 2141-2151
  • Chu, D., Gilman, S., (1996) J. Electrochem. Soc., 143, pp. 1685-1690
  • Deivaraj, T., Lee, J., (2005) J. Power Sources, 142, pp. 43-49
  • Ma, L., Liu, C., Liao, J., Lu, T., Xing, W., Zhang, J., (2009) Electrochim. Acta, 54, pp. 7274-7279
  • Neto, A.O., Dias, R.R., Tusi, M.M., Linardi, M., Spinace, E.V., (2007) J. Power Sources, 166, pp. 87-91
  • Nitani, H., Nakagawa, T., Daimon, H., Kurobe, Y., Ono, T., Honda, Y., Koizumi, A., Yamamoto, T.A., (2007) Appl. Catal., A, 326, pp. 194-201
  • Wang, Liao, J., Liu, C., Xing, W., Lu, T., (2009) Electrochem. Commun., 11, pp. 198-201
  • Liu, Z., Ling, X.Y., Su, X., Lee, J.Y., (2004) J. Phys. Chem. B, 108, pp. 8234-8240
  • Antolini, E., Cardellini, F., (2001) J. Alloys Compd., 315, pp. 118-122
  • Antolini, E., Giorgi, L., Cardellini, F., Passalacqua, E., (2001) J. Solid State Electrochem., 5, pp. 131-140
  • Gasteiger, H.A., Markovic, N., Ross, P.N., Cairns, E.J., (1994) J. Phys. Chem., 98, pp. 617-625
  • Jusys, Z., Kaiser, J., Behm, R.J., (2002) Electrochim. Acta, 47, pp. 3693-3706
  • Maillard, F., Bonnefont, A., Chatenet, M., Guetaz, L., Doisneaucottignies, B., Roussel, H., Stimming, U., (2007) Electrochim. Acta, 53, pp. 811-822
  • Takasu, Y., Fujiwara, T., Murakami, Y., Sasaki, K., Oguri, M., Asaki, T., Sugimoto, W., (2000) J. Electrochem. Soc., 147, pp. 4421-4427
  • Takasu, Y., Kawaguchi, T., Sugimoto, W., Murakami, Y., (2003) Electrochim. Acta, 48, pp. 3861-3868
  • Nores-Pondal, F.J., Vilella, I.M.J., Troiani, H., Granada, M., De Miguel, S.R., Scelza, O.A., Corti, H.R., (2009) Int. J. Hydrogen Energy, 34, pp. 8193-8203
  • Jiang, J., Kucernak, A., (2003) J. Electroanal. Chem., 543, pp. 187-199
  • Jiang, J., Kucernak, A., (2002) J. Electroanal. Chem., 520, pp. 64-70
  • Jusys, Z., Kaiser, J., Behm, R.J., (2003) Langmuir, 19, pp. 6759-6769
  • Chrzanowaki, W., Wieckowski, A., (1999) Interfacial Electrochemistry: Theory, Experiment, Aplications, , Wieckowski, A. Dekker: New York
  • Schmidt, T.J., Noeske, M., Gasteiger, H.A., Behm, R.J., (1998) J. Electrochem. Soc., 145, pp. 925-931
  • Wang, H., Wingender, C., Baltruschat, H., Lopez, M., Reetz, M.T., (2001) J. Electroanal. Chem., 509, pp. 163-169
  • Wang, H., Baltruschat, H., (2007) J. Phys. Chem. C, 111, pp. 7038-7048
  • Iwasita, T., Vielstich, W., (1986) J. Electroanal. Chem., 201, pp. 403-408
  • Jusys, Z., Behm, R.J., (2001) J. Phys. Chem. B, 105, pp. 10874-10883
  • Jusys, Z., Massong, H., Baltruschat, H., (1999) J. Electrochem. Soc., 146, pp. 1093-1098
  • Angerstein-Kozlowska, H., Conway, B.E., Sharp, W.B.A., (1973) J. Electroanal. Chem., 43, pp. 9-36
  • Cohen, J.L., Volpe, D.J., Abruña, H.D., (2007) Phys. Chem. Chem. Phys., 9, pp. 49-77

Citas:

---------- APA ----------
Viva, F.A., Bruno, M.M., Jobbágy, M. & Corti, H.R. (2012) . Electrochemical characterization of PtRu nanoparticles supported on mesoporous carbon for methanol electrooxidation. Journal of Physical Chemistry C, 116(6), 4097-4104.
http://dx.doi.org/10.1021/jp209549g
---------- CHICAGO ----------
Viva, F.A., Bruno, M.M., Jobbágy, M., Corti, H.R. "Electrochemical characterization of PtRu nanoparticles supported on mesoporous carbon for methanol electrooxidation" . Journal of Physical Chemistry C 116, no. 6 (2012) : 4097-4104.
http://dx.doi.org/10.1021/jp209549g
---------- MLA ----------
Viva, F.A., Bruno, M.M., Jobbágy, M., Corti, H.R. "Electrochemical characterization of PtRu nanoparticles supported on mesoporous carbon for methanol electrooxidation" . Journal of Physical Chemistry C, vol. 116, no. 6, 2012, pp. 4097-4104.
http://dx.doi.org/10.1021/jp209549g
---------- VANCOUVER ----------
Viva, F.A., Bruno, M.M., Jobbágy, M., Corti, H.R. Electrochemical characterization of PtRu nanoparticles supported on mesoporous carbon for methanol electrooxidation. J. Phys. Chem. C. 2012;116(6):4097-4104.
http://dx.doi.org/10.1021/jp209549g