Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The liquid-vapor transition in cylindrical pores is studied as a function of pore size and hydrophilicity through molecular dynamics simulations with the mW coarse-grained model of water. We identify two distinct filling mechanisms, depending on whether the water-pore interaction is smaller or larger than the water-water interaction. In the former case (that we term hydrophobic pore), the formation of the condensed phase proceeds gradually with filling, through the nucleation of a water cluster which grows toward the center of the cavity. In hydrophilic pores, instead, the condensed phase develops in conditions of supersaturation, which in principle become more extreme with increasing pore radius and surface affinity. For highly hydrophilic interfaces (those with adsorption energy for water above 10 kcal/mol), the equilibrium and dynamical properties of water in confinement turn out to be practically independent of water affinity. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores
Autor:De La Llave, E.; Molinero, V.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112-0850, United States
Palabras clave:Adsorption energies; Coarse grained models; Condensed phase; Cylindrical Pores; Dynamical properties; Hydrophilic interfaces; Hydrophilic pores; Hydrophobic pore; Liquid-vapor transitions; Molecular dynamics simulations; Pore radius; Sorption hysteresis; Surface affinity; Water affinity; Water cluster; Water-water interactions; Adsorption; Computer simulation; Filling; Hydrophilicity; Molecular dynamics; Nanopores; Water vapor; Phase interfaces
Año:2012
Volumen:116
Número:2
Página de inicio:1833
Página de fin:1840
DOI: http://dx.doi.org/10.1021/jp206580z
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v116_n2_p1833_DeLaLlave

Referencias:

  • Ng, E.-P., Mintova, S., (2008) Microporous Mesoporous Mater., 114, p. 1
  • Papadopoulou, A., Van Swol, F., (1992) J. Chem. Phys., 97, p. 6942
  • Branton, P.J., Hall, P.G., Treguer, M., Sing, K.S.W., (1995) J. Chem. Soc., Faraday Trans., 91, p. 2041
  • Inagaki, S., Fukushima, Y., (1998) Microporous Mesoporous Mater., 21, p. 667
  • Vishnyakov, A., Neimark, A., (2001) J. Phys. Chem. B, 105, p. 7009
  • Matsumoto, A., Sasaki, T., Nishimiya, N., Tsutsumi, K., (2001) Langmuir, 17, p. 47
  • Thommes, M., Smarsly, B., Groenewolt, M., Ravikovitch, P.I., Neimark, A.V., (2006) Langmuir, 22, p. 756
  • Kocherbitov, V., Alfredsson, V., (2007) J. Phys. Chem. C, 111, p. 12906
  • De La Llave, E., Molinero, V., Scherlis, D.A., (2010) J. Chem. Phys., 133, p. 34513
  • Morishige, K., Yoshida, K., (2011) J. Phys. Chem. B, 114, p. 7095
  • Kocherbitov, V., Alfredsson, V., (2011) Langmuir, 27, p. 3889
  • Llewellyn, P.L., Schueth, F., Grillet, Y., Rouquerol, F., Rouquerol, J., Unger, K.K., (1995) Langmuir, 11, p. 574
  • Takahara, S., Nakano, M., Kittaka, S., Kuroda, Y., Mori, T., Hamano, H., Yamaguchi, T., (1999) J. Phys. Chem. B, 103, p. 5814
  • Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G.H., Limbach, H.-H., Buntkowsky, G., (2004) Chem.-Eur. J., 10, p. 5689
  • Llewellyn, P., Grillet, Y., Schüth, F., Reichert, H., (1994) Microporous Mater., 3, p. 345
  • Branton, P.J., Hall, P.G., Sing, K.S.W., Reichert, H., Schuth, F.S., Unger, K.K., (1994) J. Chem. Soc., Faraday Trans., 90, p. 2965
  • Ravikovitch, P.I., Domhnaill, S.C.O., Neimark, A.V., Schüth, F., Unger, K.K., (1995) Langmuir, 11, p. 4765
  • Hummer, G., Rasaiah, J.C., Noworyta, J.P., (2001) Nature, 414, p. 188
  • Do, D.D., Do, H.D., (2000) Carbon, 38, p. 767
  • Striolo, A., Gubbins, K.E., Gruszkiewicz, M.S., Cole, D.R., Simonson, J.M., Chialvo, A.A., Cummings, P.T., More, K.L., (2005) Langmuir, 21, p. 9457
  • Striolo, A., Chialvo, A.A., Cummings, P.T., Gubbins, K.E., (2006) J. Chem. Phys., 124, p. 74710
  • Iiyama, T., Ruike, M., Kaneko, K., (2000) Chem. Phys. Lett., 331, p. 359
  • Ohba, T., Kanoh, H., Kaneko, K., (2004) J. Phys. Chem. B, 108, p. 14964
  • Ohba, T., Kanoh, H., Kaneko, K., (2004) J. Am. Chem. Soc., 126, p. 1560
  • Ohba, T., Kanoh, H., Kaneko, K., (2005) Nano Lett., 5, p. 227
  • Ohba, T., Kanoh, H., Kaneko, K., (2005) Chem.-Eur. J., 11, p. 4890
  • Tao, Y., Endo, M., Kaneko, K., (2009) J. Am. Chem. Soc., 131, p. 904
  • Tao, Y., Endo, M., Kaneko, K., (2010) J. Am. Chem. Soc., 132, p. 1214
  • Shirono, K., Daiguji, H., (2007) J. Phys. Chem. C, 111, p. 7938
  • Takahara, S., Sumiyama, N., Kittaka, S., Yamaguchi, T., Bellissent-Funel, M.-C., (2005) J. Phys. Chem. B, 109, p. 11231
  • Romero-Vargas Castrillón, S., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 7973
  • Romero-Vargas Castrillón, S., Giovambattista, N., Aksay, I.A., Debenedetti, P.G., (2009) J. Phys. Chem. B, 113, p. 1438
  • Saugey, A., Bocquet, L., Barrat, J.L., (2005) J. Phys. Chem. B, 109, p. 6520
  • Monson, P.A., (2008) Langmuir, 24, p. 12295
  • Brovchenko, I., Geiger, A., Oleinikova, A., (2004) J. Chem. Phys., 120, p. 1958
  • Chakraborty, A., Baran Saha, B., Koyama, S., (2009) J. Chem. Eng. Data, 54, p. 448
  • Siboulet, B., Coasne, B., Dufrêche, J.-F., Turq, P., (2011) J. Phys. Chem. B, 115, p. 7881
  • Molinero, V., Moore, E.B., (2009) J. Phys. Chem. B, 113, p. 4008
  • Stillinger, F.H., Weber, T.A., (1985) Phys. Rev. B, 31, p. 5262
  • Moore, E.B., Molinero, V., (2009) J. Chem. Phys., 130, p. 244505
  • Moore, E.B., De La Llave, E., Welke, K., Scherlis, D.A., Molinero, V., (2010) Phys. Chem. Chem. Phys., 12, p. 4124
  • Kastelowitz, N., Johntson, J.C., Molinero, V., (2010) J. Chem. Phys., 132, p. 124511
  • Jacobson, L.C., Hujo, W., Molinero, V., (2009) J. Phys. Chem. B, 113, p. 10298
  • Plimpton, S.J., (1995) J. Comput. Phys., 117, p. 1

Citas:

---------- APA ----------
De La Llave, E., Molinero, V. & Scherlis, D.A. (2012) . Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores. Journal of Physical Chemistry C, 116(2), 1833-1840.
http://dx.doi.org/10.1021/jp206580z
---------- CHICAGO ----------
De La Llave, E., Molinero, V., Scherlis, D.A. "Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores" . Journal of Physical Chemistry C 116, no. 2 (2012) : 1833-1840.
http://dx.doi.org/10.1021/jp206580z
---------- MLA ----------
De La Llave, E., Molinero, V., Scherlis, D.A. "Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores" . Journal of Physical Chemistry C, vol. 116, no. 2, 2012, pp. 1833-1840.
http://dx.doi.org/10.1021/jp206580z
---------- VANCOUVER ----------
De La Llave, E., Molinero, V., Scherlis, D.A. Role of confinement and surface affinity on filling mechanisms and sorption hysteresis of water in nanopores. J. Phys. Chem. C. 2012;116(2):1833-1840.
http://dx.doi.org/10.1021/jp206580z