Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electron accumulation in TiO 2 ethanolic sols prepared by the HCl hydrolysis of a titanium alkoxide has been scrutinized by UV-vis and EPR spectroscopy. Unexpectedly, Ti(III) centers, g = 1.9551, formed after controlled monochromatic irradiation of the sols could be detected at room temperature by EPR spectroscopy. The yield of the paramagnetic signal and the number of accumulated reducing species, detected in dark titration experiments, increase as the water to titanium molar ratio, h, used in the synthesis diminishes. A 3.8% Ti(III) production efficiency was estimated for h = 6.5. Bidentate ethoxide coordination to the titanium dioxide surface and the replacement of surface hydroxylic groups by chloride ions is directly inferred by FTIR and EPR spectroscopies. Both findings are proposed to account for the room temperature detection of the Ti(III) species, and the higher electron storage capacity of the colloids prepared with lower h values. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Surface chemistry determines electron storage capabilities in alcoholic sols of titanium dioxide nanoparticles. A combined FTIR and room temperature EPR investigation
Autor:Iorio, Y.D.; Aguirre, M.E.; Brusa, M.A.; Grela, M.A.
Filiación:Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar Del Plata, B7602AYL Mar del Plata, Buenos Aires, Argentina
Idioma: Inglés
Palabras clave:Chloride ions; Electron accumulation; Electron storage; EPR spectroscopy; Ethoxides; FTIR; Hydroxylic groups; Molar ratio; Monochromatic irradiation; Paramagnetic signals; Production efficiency; Reducing species; Room temperature; Room temperature detection; TiO; Titanium alkoxides; Titanium dioxide nanoparticles; Titanium dioxide surfaces; Chlorine compounds; Oxides; Paramagnetic resonance; Paramagnetism; Sols; Surface chemistry; Titanium; Titration; Titanium dioxide
Año:2012
Volumen:116
Número:17
Página de inicio:9646
Página de fin:9652
DOI: http://dx.doi.org/10.1021/jp301659t
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v116_n17_p9646_Iorio

Referencias:

  • Brownson, J.R.S., Tejedor-Tejedor, M.I., Anderson, M.A., (2005) Chem. Mater., 17, pp. 6304-6310
  • Wang, R., Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K., (1999) J. Phys. Chem. B, 103, pp. 2188-2194
  • Brownson, J.R.S., Lee, T.J., Anderson, M.A., (2005) Chem. Mater., 17, pp. 3025-3030
  • Redmond, G., Fitzmaurice, D., Grätzel, M., (1993) J. Phys. Chem., 97, pp. 6951-6954
  • Maira, A.J., Yeung, K.L., Lee, C.Y., Yue, P.L., Chan, C.K., (2000) J. Catal., 192, pp. 185-196
  • Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M., (2002) J. Phys. Chem. B, 106, pp. 10543-10552
  • Di Iorio, Y., San Román, E., Litter, M.I., Grela, M.A., (2008) J. Phys. Chem. C, 112, pp. 16532-16538
  • Brownson, J.R.S., Tejedor, M.I., Anderson, M.A., (2006) J Phys. Chem. B, 110, pp. 12494-12499
  • Burgos, M., Langlet, M., (1999) Thin Solid Films, 349, pp. 19-23
  • Yu, Z., Chuang, S.S.C., (2007) J. Catal., 246, pp. 118-126
  • Wang, C.-Y., Groenzin, H., Shultz, M.J., (2004) J. Phys. Chem. B, 108, pp. 265-272
  • Wang, C.-Y., Groenzin, H., Shultz, M.J., (2004) J. Am. Chem. Soc., 126, pp. 8094-8095
  • Wang, C.-Y., Groenzin, H., Shultz, M.J., (2005) J. Am. Chem. Soc., 127, pp. 9736-9744
  • Mendive, C.B., Bredow, T., Feldhoff, A., Blesa, M.A., Bahnemann, D.W., (2009) Phys. Chem. Chem. Phys., 11, pp. 1794-1808
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, pp. 19314-19319
  • Oviedo, J., Sanchez-De-Armas, R., San Miguel, M.A., Sanz, J.F., (2008) J. Phys. Chem. C, 112, pp. 17737-17740
  • Wu, W.-C., Chuang, C.-C., Lin, J.-L., (2000) J. Phys. Chem. B, 104, pp. 8719-8724
  • Micic, O.I., Zhang, Y., Cromack, K.R., Trifunac, A.D., Thurnauer, M.C., (1993) J. Phys. Chem., 97, pp. 13284-13288
  • Lund, T., Wayner, D.M., Jonsson, M., Larsen, A.G., Daasbjerg, K., (2001) J. Am. Chem. Soc., 123, pp. 12590-12595
  • Wardman, P., (1989) J. Phys. Chem. Ref. Data, 18, p. 1637
  • Choi, W., Hoffmann, M.R., (1995) Environ. Sci. Technol., 29, pp. 1646-1654
  • Kamat, P.V., Bedja, I., Hotchandani, S., (1994) J. Phys. Chem., 98, p. 9137
  • Highfield, J.G., Grätzel, M., (1988) J. Phys. Chem., 92, pp. 464-467
  • Duonghong, D., Ramsden, J., Grätzel, M., (1982) J. Am. Chem. Soc., 104, pp. 2977-2985
  • Liu, C.Y., Bard, A.J., (1989) J. Phys. Chem., 93, pp. 3232-3237
  • Obare, S.O., Ito, T., Meyer, G.J., (2005) J. Am. Chem. Soc., 128, pp. 712-713
  • Grela, M.A., Colussi, A.J., (1999) J. Phys. Chem. B, 103, pp. 2614-2619
  • Choi, W., Termin, A., Hoffmann, M.R., (1994) J. Phys. Chem., 98, pp. 13669-13679
  • Di Iorio, Y., Brusa, M.A., Feldhoff, A., Grela, M.A., (2009) ChemPhysChem, 10, pp. 1077-1083
  • Brusa, M.A., Grela, M.A., (2003) Phys. Chem. Chem. Phys., 5, pp. 3294-3298
  • Takai, A., Kamat, P.V., (2011) ACS Nano, 5, pp. 7369-7376
  • Wang, C.-Y., Pagel, R., Bahnemann, D.W., Dohrmann, J.K., (2004) J. Phys. Chem. B, 108, pp. 14082-14092
  • Martini, I., Hodak, J.H., Hartland, G.V., (1998) J. Phys. Chem. B, 102, pp. 607-614
  • Mohamed, H.H., Mendive, C.B., Dillert, R., Bahnemann, D.W., (2011) J. Phys. Chem. A, 115, pp. 2139-2147
  • Szczepankiewicz, S.H., Colussi, A.J., Hoffmann, M.R., (2000) J. Phys. Chem. B, 104, pp. 9842-9850
  • Szczepankiewicz, S.H., Colussi, A.J., Moss, J.A., Hoffmann, M.R., (2002) J. Phys. Chem. B, 106, pp. 2922-2927
  • Panayotov, D., Yates, Jr.J.T., (2005) Chem. Phys. Lett., 410, pp. 11-17
  • Safrany, A., Gao, R., Rabani, J., (2000) J. Phys. Chem. B, 104, pp. 5848-5853
  • Howe, R.F., Gratzel, M., (1985) J. Phys. Chem., 89, pp. 4495-4499
  • Scotti, R., Bellobono, I.R., Canevali, C., Cannas, C., Catti, M., D'Arienzo, M., Musinu, A., Morazzoni, F., (2008) Chem. Mater., 20, pp. 4051-4061
  • Carneiro, J.T., Savenije, T.J., Moulijn, J.A., Mul, G., (2011) J. Phys. Chem. C, 115, pp. 2211-2217
  • Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., Thurnauer, M.C., (2003) J. Phys. Chem. B, 107, pp. 4545-4549
  • D'Arienzo, M., Carbajo, J., Bahamonde, A., Crippa, M., Polizzi, S., Scotti, R., Wahba, L., Morazzoni, F., (2011) J. Am. Chem. Soc., 133, pp. 17652-17661
  • Ke, S.-C., Wang, T.-C., Wong, M.-S., Gopal, N.O., (2006) J. Phys. Chem. B, 110, pp. 11628-11634
  • Kumar, C.P., Gopal, N.O., Wang, T.C., Wong, M.-S., Ke, S.C., (2006) J. Phys. Chem. B, 110, pp. 5223-5229
  • Howe, R.F., Gratzel, M., (1987) J. Phys. Chem., 91, pp. 3906-3909
  • Livraghi, S., Chiesa, M., Paganini, M.C., Giamello, E., (2011) J. Phys. Chem. C, 115, pp. 25413-25421
  • Berger, T., Sterrer, M., Diwald, O., Knözinger, E., Panayotov, D., Thompson, T.L., Yates, T., (2005) J. Phys. Chem. B, 109, pp. 6061-6068
  • Rajh, T., Ostafin, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C., (1996) J. Phys. Chem., 100, pp. 4538-4545
  • Lassmann, G., Eriksson, L.A., Lendzian, F., Lubitz, W., (2000) J. Phys. Chem. A, 104, pp. 9144-9152
  • Kholodenko, Y.V., Kuchmii, S.Y., Korzhak, A.V., Kryukov, A.I., (1986) Theor. Exp. Chem., 23, pp. 274-280
  • Goldberg, I.B., Goeppinger, W.F., (1972) Inorg. Chem., 11, pp. 3129-3133
  • Giggenbach, W., Brubaker, Jr.C.H., (1969) Inorg. Chem., 8, pp. 1131-1137
  • Wilson, R.C., Myers, R.J., (1976) J. Chem. Phys., 64, pp. 2208-2211
  • Maurelli, S., Livraghi, S., Chiesa, M., Giamello, E., Van Doorslaer, S., Di Valentin, C., Pacchioni, G., (2011) Inorg. Chem., 50, pp. 2385-2394
  • Gao, R., Safrany, A., Rabani, J., (2003) Radiat. Phys. Chem., 67, pp. 25-39
  • Park, H., Choi, W., (2004) J. Phys. Chem. B, 108, pp. 4086-4093

Citas:

---------- APA ----------
Iorio, Y.D., Aguirre, M.E., Brusa, M.A. & Grela, M.A. (2012) . Surface chemistry determines electron storage capabilities in alcoholic sols of titanium dioxide nanoparticles. A combined FTIR and room temperature EPR investigation. Journal of Physical Chemistry C, 116(17), 9646-9652.
http://dx.doi.org/10.1021/jp301659t
---------- CHICAGO ----------
Iorio, Y.D., Aguirre, M.E., Brusa, M.A., Grela, M.A. "Surface chemistry determines electron storage capabilities in alcoholic sols of titanium dioxide nanoparticles. A combined FTIR and room temperature EPR investigation" . Journal of Physical Chemistry C 116, no. 17 (2012) : 9646-9652.
http://dx.doi.org/10.1021/jp301659t
---------- MLA ----------
Iorio, Y.D., Aguirre, M.E., Brusa, M.A., Grela, M.A. "Surface chemistry determines electron storage capabilities in alcoholic sols of titanium dioxide nanoparticles. A combined FTIR and room temperature EPR investigation" . Journal of Physical Chemistry C, vol. 116, no. 17, 2012, pp. 9646-9652.
http://dx.doi.org/10.1021/jp301659t
---------- VANCOUVER ----------
Iorio, Y.D., Aguirre, M.E., Brusa, M.A., Grela, M.A. Surface chemistry determines electron storage capabilities in alcoholic sols of titanium dioxide nanoparticles. A combined FTIR and room temperature EPR investigation. J. Phys. Chem. C. 2012;116(17):9646-9652.
http://dx.doi.org/10.1021/jp301659t