Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The umbrella sampling methodology is applied in the framework of density functional theory and Car-Parrinello molecular dynamics simulations to obtain the free energy profiles for the dissociation of methanol and water on stoichiometric TiO2 surfaces. In particular, we study the dissociation of water on rutile (110) and anatase (101), and the dissociation of the O-H and C-O bonds of methanol on anatase (101). We discuss the reaction free energies and activation barriers of these processes in the light of experiments and previous simulations at zero temperature. The entropic contribution to the reaction free energy is found to be positive for the dissociation of water and negative for the dissociation of methanol. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Dissociation free energy profiles for water and methanol on TiO2 surfaces
Autor:Sánchez, V.M.; Cojulun, J.A.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Ciudad Universitaria, Pab. II, Buenos Aires (C1428EHA), Argentina
Department of Mechanical and Aerospace Engineering, University of California - Irvine, Irvine, CA 92697, United States
Palabras clave:Activation barriers; Car-Parrinello molecular dynamics simulations; Entropic contributions; Reaction free energy; TiO; Umbrella sampling; Zero temperatures; Activation energy; Density functional theory; Free energy; Methanol; Molecular dynamics; Oxide minerals; Reaction kinetics; Titanium dioxide; Dissociation
Año:2010
Volumen:114
Número:26
Página de inicio:11522
Página de fin:11526
DOI: http://dx.doi.org/10.1021/jp102361z
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v114_n26_p11522_Sanchez

Referencias:

  • Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53
  • Henderson, M.A., (2005) Surf. Sci. Rep., 46, p. 1
  • Pang, C.L., Lindsay, R., Thornton, G., (2008) Chem. Soc. Rev., 37, p. 2328
  • Lindan, P.J.D., Harrison, N.M., Holender, J.M., Gillan, M.J., (1996) Chem. Phys. Lett., 261, p. 246
  • Vittadini, A., Selloni, A., Rotzinger, F.P., Grätzel, M., (1998) Phys. Rev. Lett., 81, p. 2954
  • Bates, S.P., Kresse, G., Gillan, M.J., (1998) Surf. Sci., 409, p. 336
  • Schaub, R., Thostrup, P., Lopez, N., Lgsgaard, E., Stensgaard, I., Nrskov, J.K., Besenbacher, F., (2001) Phys. Rev. Lett., 87, p. 266104
  • Tilocca, A., Selloni, A., (2003) J. Chem. Phys., 119, p. 7445
  • Harris, L.A., Quong, A.A., (2004) Phys. Rev. Lett., 93, p. 86105
  • Lindan, P.J.D., Zhang, C., (2005) Phys. Rev. B, 72, p. 075439
  • Oviedo, J., Sánchez De Armas, R., San Miguel, M.A., Sanz, J.F., (2008) J. Phys. Chem. C, 112, p. 17737
  • Tilocca, A., Selloni, A., (2005) ChemPhysChem, 6, p. 1911
  • Bates, S.P., Gillan, M.J., Kresse, G., (1998) J. Phys. Chem. B, 102, p. 2017
  • Vittadini, A., Selloni, A., Rotzinger, F.P., Grätzel, M., (2000) J. Phys. Chem. B, 104, p. 1300
  • Käckell, P., Terakura, K., (2000) App. Surf. Sci., 166, p. 370
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 19314
  • Foster, A.S., Nieminen, R.M., (2004) J. Chem. Phys., 121, p. 9039
  • Foster, A.S., Gal, A.Y., Nieminen, R.M., Shluger, A.L., (2005) J. Phys. Chem. B, 109, p. 4554
  • Köppen, S., Langel, W., (2008) Phys. Chem. Chem. Phys., 10, p. 1907
  • Kurtz, R.L., Stockbauer, R., Madey, T.E., Román, E., De Segovia, J.L., (1989) Surf. Sci., 218, p. 178
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 4743
  • Tilocca, A., Selloni, A., (2004) Langmuir, 20, p. 8379
  • Torrie, G., Valleau, J.P., (1977) J. Comput. Phys., 23, p. 187
  • Giannozzi, P., (2009) J. Phys.: Condens. Matter, 21, p. 395502. , http://www.quantum-espresso.org/
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244
  • Perdew, J.P., (1992) Phys. Rev. B, 46, p. 6671
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892
  • Car, R., Parrinello, M., (1985) Phys. Rev. Lett., 55, p. 2471
  • Frenkel, D., Smit, B., (2002) Understanding Molecular Simulation, , 2 nd ed.; Academic Press: San Diego, CA
  • Sánchez, V.M., Crespo, A., Gutkind, J.S., Turjanski, A.G., (2006) J. Phys. Chem. B, 110, p. 18052
  • Bikiel, D.E., Di Salvo, F., González Lebrero, M.C., Doctorovich, F., Estrin, D.A., (2005) Inorg. Chem., 44, p. 5286
  • González Lebrero, M.C., Estrin, D.A., (2007) J. Chem. Theory Comput., 3, p. 1405

Citas:

---------- APA ----------
Sánchez, V.M., Cojulun, J.A. & Scherlis, D.A. (2010) . Dissociation free energy profiles for water and methanol on TiO2 surfaces. Journal of Physical Chemistry C, 114(26), 11522-11526.
http://dx.doi.org/10.1021/jp102361z
---------- CHICAGO ----------
Sánchez, V.M., Cojulun, J.A., Scherlis, D.A. "Dissociation free energy profiles for water and methanol on TiO2 surfaces" . Journal of Physical Chemistry C 114, no. 26 (2010) : 11522-11526.
http://dx.doi.org/10.1021/jp102361z
---------- MLA ----------
Sánchez, V.M., Cojulun, J.A., Scherlis, D.A. "Dissociation free energy profiles for water and methanol on TiO2 surfaces" . Journal of Physical Chemistry C, vol. 114, no. 26, 2010, pp. 11522-11526.
http://dx.doi.org/10.1021/jp102361z
---------- VANCOUVER ----------
Sánchez, V.M., Cojulun, J.A., Scherlis, D.A. Dissociation free energy profiles for water and methanol on TiO2 surfaces. J. Phys. Chem. C. 2010;114(26):11522-11526.
http://dx.doi.org/10.1021/jp102361z