Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In contrast with the case of thiols, molecular level information regarding the binding of carbon to metals is very scarce. Motivated by the growing interest in the grafting of conducting surfaces and seeking a rationale to explain the differences in electron transfer rates measured in recent experiments, we apply density functional theory to shed light on the binding of carbon to gold. A comparative study between the C - Au(111) and the S - Au(111) bonds allows us to establish a thermodynamic, structural, and electronic description of the aromatic and aliphatic chemisorption. Enlightening insight emerges from the projected density of states, which delivers a natural interpretation of the difference in conductance observed for the two kind of linkages. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond
Autor:De La Llave, E.; Ricci, A.; Calvo, E.J.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Pab. II, Buenos Aires, (C1428EHA), Argentina
Palabras clave:Chemisorption; Au(111); Au(111) surface; Comparative studies; Conducting surfaces; Electron transfer rates; Molecular levels; Natural interpretations; Projected density of states; Density functional theory
Año:2008
Volumen:112
Número:45
Página de inicio:17611
Página de fin:17617
DOI: http://dx.doi.org/10.1021/jp8036395
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v112_n45_p17611_DeLaLlave

Referencias:

  • Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., Saveant, J.-M., (1997) J. Am. Chem. Soc, 119, p. 201
  • Adenier, A., Bernard, M.-C., Chehimi, M.M., Cabet-Deliry, E., Desbat, B., Fagebaume, O., Pinson, J., Podvorica, F., (2001) J. Am. Chem. Soc, 123, p. 4541
  • Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Smaĺley, R.E., (2003) Science, 301, p. 1519
  • Stewart, M.P., Maya, F., Kosynkin, D.V., Dirk, S.M., Stapleton, J.J., McGuiness, C.L., Allara, D.L., Tour, J.M., (2004) J. Am. Chem. Soc, 126, p. 370
  • Seshadri, K., Atre, S.V., Tao, Y.-T., Lee, M.-T., Allara, D.L., (1997) J. Am. Chem. Soc, 119, p. 4698
  • Bernard, M.-C., Chausse, A., Cabet-Deliry, E., Chehimi, M.M., Pinson, J., Podvorica, F., Vautrin-Ul, C., (2003) Chem. Mater, 15, p. 3450
  • Laforgue, A., Addou, T., Belanger, D., (2005) Langmuir, 21, p. 6855
  • Ricci, A., Bonazzola, C., Calvo, E.J., (2006) Phys. Chem. Chem. Phys, 8, p. 4297
  • Palacin, S.; Bureau, C.; Charlier, J.; Deniau, G.; Mounada, B.; Viel, P. ChemPhysChem 2004, 5, 1468; Pinson, J., Podvorica, F., (2005) Chem. Soc. Rev, 34, p. 429
  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev, 105, p. 1103
  • Vericat, C., Vela, M.E., Benitez, G.A., Martin Gago, J.A., Torrelles, X., Salvarezza, R.C., (2006) J. Phys.: Condens. Matter, 18, p. 867
  • Ricci, A., Rolli, C., Rothacher, S., Baraldo, L., Bonazzola, C., Calvo, E.J., Tognalli, N., Fainstein, A., (2007) J. Solid State Electrochem, 11, p. 1511
  • Ricci, A.; Vericat, C.; Benitez, G. A.; Salvarezza, R. C.; de la Llave, E.; Scherlis, D. A.; Calvo, E. J. manuscript in preparation; Cometto, F.P., Paredes-Olivera, P., Macagno, V.A., Patrito, E.M., (2005) J. Phys. Chem. B, 109, p. 21737
  • Bilić, A., Reimers, J.R., Hush, N.S., (2005) J. Chem. Phys, 122, p. 94708
  • De Renzi, V., Di Felice, R., Marchetto, D., Biagi, R., del Pennino, U., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 16
  • Yourdshahyan, Y., Rappe, A.M., (2002) J. Chem. Phys, 117, p. 825
  • Gronbëck, H., Curioni, A., Andreoni, W., (2000) J. Am. Chem. Soc, 122, p. 3839
  • Gronbëck, H., Häkkinen, H., (2007) J. Phys. Chem. B, 111, p. 3325
  • Molina, L.M., Hammer, B., (2002) Chem. Phys. Lett, 360, p. 264
  • Maksymovych, P., Sorescu, D.C., Yates Jr., J.T., (2006) Phys. Rev. Lett, 97, p. 146103
  • Mazzarello, R., Cossaro, A., Verdini, A., Rousseau, R., Casalis, L., Danisman, N.F., Floreano, L., Scoles, G., (2007) Phys. Rev. Lett, 98, p. 16102
  • Wang, J.-G., Selloni, A., (2007) J. Phys. Chem. C, 111, p. 12149
  • Di Felice, R., Selloni, A., Molinari, E., (2003) J. Phys. Chem. B, 107, p. 1151
  • Sun, Q., Selloni, A., Scoles, G., (2006) J. Phys. Chem. B, 110, p. 3493
  • Basch, H., Ratner, M.A., (2003) J. Chem. Phys, 119, p. 11943
  • Ramachandran, G.K., Tomfohr, J.K., Li, J., Sankey, O.F., Zarate, X., Primak, A., Terazono, Y., Lindsay, S.M., (2003) J. Phys. Chem. B, 107, p. 6162
  • Andrews, D.Q., Cohen, R., Van Duyne, R.P., Ratner, M.A., (2006) J. Chem. Phys, 125, p. 174718
  • Remacle, R., Levine, R.D., (2006) Faraday Discuss, 131, p. 45
  • Jiang, D.E., Sumpter, B.G., Dai, S., (2006) J. Am. Chem. Soc, 128, p. 6030
  • Hohenberg, P., Kohn, W., (1964) Phys. Rev, 136, p. 864
  • Kohn, W., Sham, L., (1965) Phys. Rev, 140, p. 1133
  • http://www.quantum-espresso.org; Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, p. 3865
  • Monkhorst, H., Pack, J., (1976) Phys. Rev. B, 13, p. 5188
  • Methfessel, M., Paxton, T., (1989) Phys. Rev. B, 40, p. 3616
  • Ikeda, K., Kobayashi, Y., Negishi, Y., Seto, M., Iwasa, T., Nobusada, K., Tsukuda, T., Kojima, N., (2007) J. Am. Chem. Soc, 129, p. 7230
  • We note here that both curves have been obtained with different DFT functionals: the calculations performed by Bilić et al. were based on the PW91 form of the generalized gradient approximation. Even so, we chose to exhibit both curves in the same graph to contrast the distinctive behaviour of the two radicals. A comparison of the binding energies of phenylthiol computed with the same simulation parameters is given in Table 1; Badia, A., Lennox, R.B., Reven, L., (2000) Acc. Chem. Res, 33, p. 475. , and references therein
  • A value of 0.31 e has been calculated in ref 26 for a substituted phenylthiol using the same treatment; It is not unusual to find the opposite interpretation, i.e, the assumption that the larger the charge transfer, the better the conductivity. This idea should be considered with caution. While it holds if an electric field is applied, it is not necessarily true at zero bias. To the contrary, a big charge transfer is indicative of an ionic bond, in contraposition to metallic behavior

Citas:

---------- APA ----------
De La Llave, E., Ricci, A., Calvo, E.J. & Scherlis, D.A. (2008) . Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond. Journal of Physical Chemistry C, 112(45), 17611-17617.
http://dx.doi.org/10.1021/jp8036395
---------- CHICAGO ----------
De La Llave, E., Ricci, A., Calvo, E.J., Scherlis, D.A. "Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond" . Journal of Physical Chemistry C 112, no. 45 (2008) : 17611-17617.
http://dx.doi.org/10.1021/jp8036395
---------- MLA ----------
De La Llave, E., Ricci, A., Calvo, E.J., Scherlis, D.A. "Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond" . Journal of Physical Chemistry C, vol. 112, no. 45, 2008, pp. 17611-17617.
http://dx.doi.org/10.1021/jp8036395
---------- VANCOUVER ----------
De La Llave, E., Ricci, A., Calvo, E.J., Scherlis, D.A. Binding between carbon and the Au(111) surface and what makes it different from the S-Au(111) bond. J. Phys. Chem. C. 2008;112(45):17611-17617.
http://dx.doi.org/10.1021/jp8036395