Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Similarly to alizarin molecules, 3,4-dihydroxy-9,10-dioxo-2- anthracenesulfonate (alizarin red, AR), chelates TiO2 nanoparticles through the catechol moiety, and shifts the absorption threshold of the semiconductor to the visible region. The photoinduced reactivity of the coupled system AR@TiO2 was investigated through quantum yields determinations in nonscattering sols of TiO2 modified nanoparticles. In contrast with the behavior observed in TiO2 microparticulated systems, the chemisorbed ligand has a high stability under aerated visible light irradiation. The quantum yield for alizarin red oxidation Φ-AR = 4 × 10-4 correlates with the negligible efficiency for oxygen reduction in the constrained environment of the smaller particles, Conversely, reduction of Cr(VI) to Cr(V) in the coupled AR@TiO2 system, confirmed by electron paramagnetic resonance spectroscopy, utilizes a high fraction of the photogenerated electrons and induces the degradation of the complex. Quantum efficiencies for chromium(VI) disappearance, Φ-cr(v1). approaches 37% at [Cr(VI)]0 = 200 μM. The interactions between Cr(VI)/AR and Cr(VI)/TiO2 are analyzed in detail. Spectroscopic evidence is presented for the first time that Cr(VI) forms a charge-transfer complex with TiO2 nanoparticles that could be excited by visible light (λ < 440 nm). The environmental implications of the above findings are briefly discussed. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system
Autor:Di Iorio, Y.; Román, E.S.; Litter, M.I.; Grela, M.A.
Filiación:Departamento de Química, Universidad Nacional de Mar del Plata, Funes 3350, B7602AYL Mar del Plata, Argentina
INQUIMAE, Facultad de Ciencias Exactas y Naturales, Pahellón 2, 1428 Buenos Aires, Argentina
Gerencia Química, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, 1650 San Martín, Prov. de Buenos Aires, Argentina
Scuela de Posgrado, Universidad de Gral, San Martín, Peatonal Belgrano 3563, 1er. piso, 1650 San Martín, Prov. de Buenos Aires, Argentina
Palabras clave:Argon; Chemisorption; Chromium; Colloids; Electrolytic reduction; Electron spin resonance spectroscopy; Irradiation; Ligands; Nanoparticles; Nanostructured materials; Nanostructures; Oxygen; Paramagnetic resonance; Paramagnetism; Photodegradation; Quantum efficiency; System stability; Vegetation; Constrained environments; Coupled systems; Electron paramagnetic resonance spectroscopies; Environmental implications; High stabilities; Nanoparticulate systems; Oxygen reductions; Photo induced; Photogenerated electrons; Semi-conductors; Spectroscopic evidences; Visible irradiations; Visible lights; Visible regions; Chromium compounds
Año:2008
Volumen:112
Número:42
Página de inicio:16532
Página de fin:16538
DOI: http://dx.doi.org/10.1021/jp8040742
Título revista:Journal of Physical Chemistry C
Título revista abreviado:J. Phys. Chem. C
ISSN:19327447
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19327447_v112_n42_p16532_DiIorio

Referencias:

  • (2003) Semiconductor Photochemistry and Photophysics: Molecular and Supramolecular Photochemistry, , Ramamurthy, V, Schanze, K. S, Eds, Marcel Dekker: New York
  • Hebda, M., Stochel, G., Szacilowski, K., Macyk, W., (2006) J. Phys. Chem. B, 110, pp. 15275-15283
  • Argazzi, R., Murakami Iha, N.Y., Zabri, H., Odobel, F., Bignozzi, C.A., (2004) Coord. Chem. Rev, 248, pp. 1299-1316
  • Durrant, J.R., Haque, S.A., Palomares, E., (2004) Coord. Chem. Rev, 248, pp. 1247-1257
  • Tae, E.L., Lee, S.H., Yoo, S.S., Kang, E.J., Yoon, K.B., (2005) J. Phys. Chem. B, 109, pp. 22513-22522
  • Mosurkal, R., He, J.-A., Samuelson, L.A., Kumar, J., (2005) J. Photochem. Photobiol., A, 168, pp. 191-196
  • Frei, H., Fitzmaurice, D., Grätzel, M., (1990) Langmuir, 6, pp. 198-206
  • Moser, J.-E., Punchihewa, S., Infelta, P.P., Grätzel, M., (1991) Langmuir, 7, pp. 3012-3018
  • Houlding, V.H., Grätzel, M., (1983) J. Am. Chem. Soc, 105, pp. 5695-5696
  • Redmond, G., Fitzmaurice, D., (1993) J. Phys. Chem, 97, pp. 6951-6954
  • Rajh, T., Chen, L.X., Lukas, K., Liu, T., Thurnauer, M.C., Tiede, D.M., (2002) J. Phys. Chem. B, 106, pp. 10543-10552
  • Dimitrijevic, N.M., Saponjic, Z.V., Bartels, D.M., Thurnauer, M.C., Tiede, D.M., Rajh, T., (2003) J. Phys. Chem. B, 107, pp. 7368-7375
  • De la Garza, L., Saponjic, Z.V., Dimitrijevic, N.M., Thurnauer, M.C., Rajh, T., (2006) J. Phys. Chem. B, 110, pp. 680-686
  • Rajh, T., Nedeljkovic, J.M., Chen, L.X., Poluekotov, O., Thurnauer, M.C., (1999) J. Phys. Chem. B, 103, pp. 3515-3519
  • Makarova, O.V., Rajh, T., Thurnauer, M.C., Martin, A., Kemme, P.A., Cropek, D., (2000) Environ. Sci. Technol, 34, pp. 4797-4803
  • Rajh, T., Ostafln, A.E., Micic, O.I., Tiede, D.M., Thurnauer, M.C., (1996) J. Phys. Chem, 100, pp. 4538-4545
  • Agrios, A.G., Gray, K.A., Weitz, E., (2003) Langmuir, 19, pp. 1402-1409
  • Kim, S., Choi, W., (2005) J. Phys. Chem. B, 109, pp. 5143-5149
  • Lana-Villarreal, T., Rodes, A., Perez, J.M., Gomez, R., (2005) J. Am. Chem. Soc, 127, pp. 12601-12611
  • Cho, Y., Kyung, H., Choi, W., (2004) Appl. Catal., B, 52, pp. 23-32
  • Paul, T., Miller, P.L., Strathmann, T., (2007) J. Environ. Sci. Technol, 41, pp. 4720-4727
  • Hug, S.J., Sulzberger, B., (1994) Langmuir, 10, pp. 3587-3597
  • Tunesi, S., Anderson, M.A., (1992) Langmuir, 8, pp. 487-495
  • Araujo, P.Z., Mendive, C.B., García Rodenas, L.A., Morando, P.J., Regazzoni, A.E., Blesa, M.A., Bahnemann, D., (2005) Colloids Surf., A, 265, pp. 73-80
  • Huber, R., Sporlein, S., Moser, J.-E., Grätzel, M., Wachtveitl, J., (2000) J. Phys. Chem. B, 104, pp. 8995-9003
  • Huber, R., Moser, J.-E., Grätzel, M., Wachtveitl, J., (2002) J. Phys. Chem. B, 106, pp. 6494-6499
  • Ramakrishna, G., Singh, A.K., Palit, D.K., Ghosh, H.N., (2004) J. Phys. Chem. B, 108, pp. 1701-1707
  • Wang, Y., Hang, K., Anderson, N.A., Lian, T., (2003) J. Phys. Chem. B, 107, pp. 9434-9440
  • Grela, M.A., Colussi, A.J., (1999) J. Phys. Chem. B, 103, pp. 2614-2619
  • Tachikawa, T., Takai, Y., Tojo, S., Fujitsuka, M., Majima, T., (2006) Langmuir, 22, pp. 893-896
  • Minero, C., Mariella, G., Maurino, V., Pelizzetti, E., (2000) Langmuir, 16, pp. 2632-2641
  • Rego, L.G.C., Batista, V.S., (2003) J. Am. Chem. Soc, 125, pp. 7989-7997
  • Duncan, W.R., Stier, W.M., Prezhdo, O.V., (2005) J. Am. Chem. Soc, 127, pp. 7941-7951
  • Stier, W., Duncan, W.R., Prezhdo, O.V., (2004) Adv. Mater, 16, pp. 240-244
  • Duncan, W.R., Craig, C.F., Prezhdo, O.V., (2007) J. Am. Chem. Soc, 129, pp. 8528-8543
  • Perrin, D.D., Armarego, W.L.F., (1988) Purification of Laboratory Chemicals, p. 131. , Pergamon Press: Oxford
  • Wegner, E.E., Adamson, A.W., (1966) J. Am. Chem. Soc, 88, pp. 394-404
  • Kormann, C., Bahnemann, D.W., Hoffmann, M.R., (1988) J. Phys. Chem, 92, pp. 5196-5201
  • Draper, R.B., Fox, M.A., (1990) Langmuir, 6, pp. 1396-1402
  • Weng, Y.-X., Wang, Y.-Q., Asbury, J.B., Ghosh, H.N., Lian, T., (2000) J. Phys. Chem. B, 104, pp. 93-104
  • Choi, W., Termin, A., Hoffmann, M.R., (1994) J. Phsy. Chem, 98, pp. 13669-13679
  • Brusa, M.A., Di Iorio, Y., Churio, M.S., Grela, M.A., (2007) J. Mol. Catal. A: Chem, 268, pp. 29-35
  • Defoin, A., Defoin-Straatmann, R., Hildenbrand, K., Bittersmann, E., Kreft, D., Kuhn, H.J., (1986) J. Photochem, 33, p. 237
  • Kuhn, H.J., Görner, H., (1988) J. Phys. Chem, 92, p. 6208
  • Hatchard, C.G., Parker, C.A., (1956) Proc. R. Soc, 235 A, pp. 518-536
  • Kirk, A.D., Namasivayan, C., (1983) Anal. Chem, 55, pp. 2428-2429
  • (1998) Standard Methods for the Examination of Water and Wastewater, , 20th ed, Clesceri, L. S, Greenberg, A. E, Eaton A. D, Eds, American Public Health Association: Washington, DC
  • Shoute, L.C.T., Loppnow, G.R., (2002) J. Chem. Phys, 117, pp. 842-850
  • Redfern, P.C., Zapol, P., Curtiss, L.A., Rajh, T., Thurnauer, M., (2003) C. J. Phys. Chem. B, 107, pp. 11419-11427
  • Duncan, W., Prezhdo, O.V., (2005) J. Phys. Chem. B, 109, pp. 365-363
  • Jayaweera, P.M., Jayarathne, T.A.U., (2006) Surf. Sci, 600, pp. L297-L300
  • Araujo, P.Z., Morando, P.J., Blesa, M.A., (2005) Langmuir, 21, pp. 3470-3474
  • The IR spectra was calculated at the DFT level of theory using the three-parameter exchange functional of Becke B3LYP and 6-31++G(d) basis set as implemented in the SPARTAN '04 package, Wavefunction Inc; Ramakrinhna, G., Ghosh, H.N., Singh, A.K., Pulit, D.K., Mittal, J.P., (2001) J. Phys. Chem. B, 105, pp. 12786-21276
  • Chen, C., Li, X., Ma, W., Zhao, J., Hidaka, H., Serpone, N., (2002) J. Phys. Chem. B, 106, pp. 318-324
  • Liu, G., Li, X., Zhao, J., Horikoshi, S., Hidaka, H., (2000) J. Mol. Catal. A: Chem, 153, pp. 221-229
  • Wu, T., Liu, G., Zhao, J., Hidaka, H., Serpone, N., (1999) J. Phys. Chem. B, 103, pp. 4862-4867
  • Liu, G., Zhao, J., Hidaka, H., (2000) J. Photochem. Photobiol. A, 133, pp. 83-88
  • Yung, J., Chen, C., Ji, H., Ma, W., Zhao, J., (2005) J. Phys. Chem. B, 109, pp. 21900-21907
  • Biancardo, M., Argazzi, R., Bignozzi, C., (2005) Inorg. Chem, 44, pp. 9619-9621
  • Niki, K., (1985) Standard Potentials in Aqueous Solutions, p. 461. , Bard, A, Parsons, R, Jordan, J, Eds, Marcel Dekker, Inc, New York, Chapter 16, p
  • Testa, J.J., Grela, M.A., Litter, M.I., (2002) Langmuir, 17, pp. 3515-3517
  • Testa, J.J., Grela, M.A., Litter, M.I., (2004) Environ. Sci. Technol, 38, pp. 1589-1594
  • Meichtry, J.M., Brusa, M., Mailhot, G., Grela, M.A., Litter, M.I., (2007) Appl. Catal., B, 71, pp. 101-107
  • Litter, M.I., (1999) Appal. Catal., B, 23, pp. 89-114
  • Kyung, H., Lee, J., Choi, W., (2005) Environ. Sci. Technol, 39, pp. 2376-2382
  • Das, S., Saha, A., Mandal, P.C., (1996) Talanta, 43, pp. 95-102
  • Nejati-Yazdinejad, M., (2006) Anal. Sci, 22, pp. 617-619
  • Bilgic, D., Karaderi, S., Bapli, I., (2007) Rev. Anal. Chem, 26, pp. 99-108
  • García Rodenas, L.A., Weisz, A.D., Magaz, G.E., Blesa, M.A., (2000) J. Colloid Interface Sci, 230, pp. 181-185
  • Using the value of the formation constant for the metal complex of Cr(VI) with alizarin red reported in Table 8.13 of Lange's Handbook of Chemistry, 14th ed, Dean, J, Ed, McGraw-Hill, Inc, New York, log K f, 4.7. we calculated that, after equilibration of this mixture, only 10% of the initial AR remains free |AR]eq ≈ 4 μM; Hodak, J., Quinteros, C., Litter, M.I., San Roman, E., (1996) J. Chem. Soc. Faraday Trans, 92, pp. 5081-5088
  • Botta, S.G., Rodríguez, D.J., Leyva, A.G., Litter, M.I., (2002) Catal. Today, 76, pp. 247-258
  • Murruni, L., Leyva, G., Litter, M.I., (2007) Catal. Today, 129, pp. 127-135

Citas:

---------- APA ----------
Di Iorio, Y., Román, E.S., Litter, M.I. & Grela, M.A. (2008) . Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system. Journal of Physical Chemistry C, 112(42), 16532-16538.
http://dx.doi.org/10.1021/jp8040742
---------- CHICAGO ----------
Di Iorio, Y., Román, E.S., Litter, M.I., Grela, M.A. "Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system" . Journal of Physical Chemistry C 112, no. 42 (2008) : 16532-16538.
http://dx.doi.org/10.1021/jp8040742
---------- MLA ----------
Di Iorio, Y., Román, E.S., Litter, M.I., Grela, M.A. "Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system" . Journal of Physical Chemistry C, vol. 112, no. 42, 2008, pp. 16532-16538.
http://dx.doi.org/10.1021/jp8040742
---------- VANCOUVER ----------
Di Iorio, Y., Román, E.S., Litter, M.I., Grela, M.A. Photoinduced reactivity of strongly coupled TiO2 ligands under visible irradiation: An examination of an alizarin red@TiO2 nanoparticulate system. J. Phys. Chem. C. 2008;112(42):16532-16538.
http://dx.doi.org/10.1021/jp8040742