Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ETHYLENE INSENSITIVE 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important roles as potential triggers of leaf senescence and thus can be considered putative candidate genes for senescence in sunflower. © 2014 Moschen et al.

Registro:

Documento: Artículo
Título:Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.)
Autor:Moschen, S.; Luoni, S.B.; Paniego, N.B.; Hopp, H.E.; Dosio, G.A.A.; Fernandez, P.; Heinz, R.A.
Filiación:Instituto de Biotecnología, Centro de Investigaciones en Ciencias Agronómicas Y Veterinarias, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas Y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
Escuela de Ciencia Y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
Laboratorio de Fisiología Vegetal, Unidad Integrada Universidad Nacional de Mar del Plata, Estación Experimental Agropecuaria INTA Balcarce, Balcarce, Buenos Aires, Argentina
Palabras clave:chlorophyll; nitrogen; transcription factor; carbohydrate metabolism; gene expression profiling; genetics; genomics; growth, development and aging; metabolism; photosynthesis; plant leaf; solubility; sunflower; time; Carbohydrate Metabolism; Chlorophyll; Gene Expression Profiling; Genomics; Helianthus; Nitrogen; Photosynthesis; Plant Leaves; Solubility; Time Factors; Transcription Factors
Año:2014
Volumen:9
Número:8
DOI: http://dx.doi.org/10.1371/journal.pone.0104379
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:chlorophyll, 1406-65-1, 15611-43-5; nitrogen, 7727-37-9; Chlorophyll; Nitrogen; Transcription Factors
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n8_p_Moschen

Referencias:

  • Srivalli, B., Khanna-Chopra, R., The developing reproductive 'sink' induces oxidative stress to mediate nitrogen mobilization during monocarpic senescence in wheat (2004) Biochemical and Biophysical Research Communications, 325 (1), pp. 198-202. , DOI 10.1016/j.bbrc.2004.09.221, PII S0006291X04022752
  • Agüera, E., Cabello, P., De La Haba, P., Induction of leaf senescence by low nitrogen nutrition in sunflower (Helianthus annuus) plants (2010) Physiol Plant, 138, pp. 256-267
  • Nooden, L.D., Guiamet, J.J., John, I., Senescence mechanisms (1997) Physiologia Plantarum, 101 (4), pp. 746-753. , DOI 10.1034/j.1399-3054.1997.1010410.x
  • Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., The molecular analysis of leaf senescence -A genomic approach (2003) Plant Biotechnol J, 1, pp. 3-22
  • Nooden, L.D., Whole plant senescence (1988) Senescence and Aging in Plants, pp. 392-439. , AC L, editor. Academic Press, San Diego
  • Fernandez, P., Di Rienzo, J.A., Fernandez, L., Hopp, H., Paniego, N., Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis (2008) BMC Plant Biology, p. 8
  • Schuster, I., Cruz, C., (2004) Estatística Genômica Aplicada a Populações Derivadas de Cruzamentos Controlados, p. 568
  • Kane, N.C., Gill, N., King, M.J., Bowers, J.E., Berges, H., Progress towards a reference genome for sunflower (2011) Botany, 89, pp. 429-437
  • Agüera, E., Cabello, P., De La Mata, L., Molina, E., De La Haba, P., Metabolic Regulation of Leaf Senescence in Sunflower (Helianthus annuus L.) Plants (2012) Senescence, , InTech Open Access Publisher
  • Bachlava, E., Taylor, Ca., Tang, S., Bowers, J.E., Mandel, J.R., SNP discovery and development of a high-density genotyping array for sunflower (2012) PLoS ONE, 7, pp. e29814
  • Cabello, P., Aguera, E., De La, H.P., Metabolic changes during natural ageing in sunflower (Helianthus annuus) leaves: Expression and activity of glutamine synthetase isoforms are regulated differently during senescence (2006) Physiologia Plantarum, 128 (1), pp. 175-185. , DOI 10.1111/j.1399-3054.2006.00722.x
  • Fernandez, P., Paniego, N., Lew, S., Hopp, H.E., Heinz, R.A., Differential representation of sunflower ESTs in enriched organ-specific cDNA libraries in a small scale sequencing project (2003) BMC Genomics, 4, p. 40
  • Fernandez, P., Di Rienzo, J., Fernandez, L., Hopp, H.E., Paniego, N., Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis (2008) BMC Plant Biology, 8, p. 11
  • Fernandez, P., Moschen, S., Paniego, N., Heinz, R.A., Functional approaches to study leaf senescence in sunflower (2012) Senescence, , InTech Open Access Publisher
  • Fernandez, P., Soria, M., Blesa, D., DiRienzo, J., Moschen, S., Development, characterization and experimental validation of a cultivated sunflower (Helianthus annuus L.) gene expression oligonucleotide microarray (2012) PLoS ONE, p. 7
  • Lai, Z., Kane, N., Kozik, A., Hodgins, K., Dlugosch, K., Genomics of Composi tae weeds: EST libraries, microarrays, and e vidence of introgression (2012) Am J Bot, 99, pp. 209-218
  • Paniego, N., Heinz, R., Fernandez, P., Talia, P., Nishinakamasu, V., Sunflower (2007) Genome Mapping and Molecular Breeding in Plants, pp. 153-177. , Kole C, editor. Berlin Heidelberg: Springer-Verlag
  • Peluffo, L., Lia, V., Troglia, C., Maringolo, C., Norma, P., Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection (2010) Phytochemistry, 71, pp. 70-80
  • Moschen, S., Radonic, L.M., Ehrenbolger, G.F., Fernández, P., Lía, V., Functional Genomics and Transgenesis Applied to Sunflower Breeding (2014) Sunflowers: Growth and Development, Environmental Influences and Pests/Diseases, pp. 131-164. , Arribas JI, editor. Nova Science Publishers
  • Bazin, J., Langlade, N., Vincourt, P., Arribat, S., Balzergue, S., Targeted mRNA oxidation regulates sunflower seed dormancy alleviation during dry after-ripening (2011) Plant Cell, 23, pp. 2196-2208
  • Chan, R.L., The use of sunflower transcription factors as biotechnological tools to improve yield and stress tolerance in crops (2009) FYTON, 78, pp. 5-10
  • Dosio, G.A.A., Quiroz, F.J., Enfermedades foliares en girasol y su relación con la formación del rendimiento y el contenido de aceite (2010) Avances en Ecofisiología de Cultivos de Granos, pp. 237-254. , Miralles D.J., Aguirrezábal L.A.N., Otegui M.E., Kruk B.C., Izquierdo N.G., editors. Buenos Aires, Argentina.: Editorial Facultad de Agronomía UBA
  • Sadras, V.O., Echarte, L., Andrade, F.H., Profiles of Leaf Senescence During Reproductive Growth of Sunflower and Maize (2000) Annals of Botany, 85, pp. 187-195
  • Sadras, V.O., Quiroz, F., Echarte, L., Escande, A., Pereyra, V.R., Effect of Verticillium dahliae on Photosynthesis, Leaf Expansion and Senescence of Fieldgrown Sunflower (2000) Annals of Botany, 86, pp. 1007-1015
  • De La Vega, A., Cantore, M.A., Sposaro, N.N., Trapani, N., Lopez Pereira, M., Canopty stay green and yield in non stressed sunflower (2011) Fields Crop Researchs, 121, pp. 175-185
  • Kusaba, M., Tanaka, A., Tanaka, R., Stay-green plants: What do they tell us about the molecular mechanism of leaf senescence (2013) Photosynth Res
  • Dosio, G.A.A., Aguirrezabal, L.A.N., Andrade, F.H., Pereyra, V.R., Solar radiation intercepted during seed filling and oil production in two sunflower hybrids (2000) Crop Science, 40 (6), pp. 1637-1644
  • Aguirrezabal, L.A.N., Lavaud, Y., Dosio, G.A.A., Izquierdo, N.G., Andrade, F.H., Gonzalez, L.M., Intercepted solar radiation during seed filling determines sunflower weight per seed and oil concentration (2003) Crop Science, 43 (1), pp. 152-161
  • Lopez, P.M., Trapani, N., Sadras, V.O., Genetic improvement of sunflower in Argentina between 1930 and 1995. Part III. Dry matter partitioning and grain composition (2000) Field Crops Research, 67 (3), pp. 215-221. , DOI 10.1016/S0378-4290(00)00096-4, PII S0378429000000964
  • Thomas, H., Senescence, ageing and death of the whole plant (2013) New Phytol, 197, pp. 696-711
  • Rousseaux, M.C., Hall, A.J., Sanchez, R.A., Far-red enrichment and photosynthetically active radiation level influence leaf senescence in field-grown sunflower (1996) Physiol Plant, 96, pp. 217-224
  • Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., High-Resolution Temporal Profiling of Transcripts during Arabidopsis Leaf Senescence Reveals a Distinct Chronology of Processes and Regulation (2011) The Plant Cell Online, 23, pp. 873-894
  • Wingler, A., Masclaux-Daubresse, C., Fischer, A.M., Sugars, senescence, and ageing in plants and heterotrophic organisms (2009) J Exp Bot, 60, pp. 1063-1066
  • Van Doorn, W.G., Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels? (2008) J Exp Bot, 59, pp. 1963-1972
  • De La Mata, L., Cabello, P., De La Haba, P., Agüera, E., Study of senescence process in primary leaves of sunflower (Helianthus annuus L.) plants under two different lights intensities (2013) Photosynthetica, 51, pp. 85-94
  • Hewezi, T., Leger, M., Gentzbittel, L., A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower (2008) Annals of Botany, 102 (1), pp. 127-140. , DOI 10.1093/aob/mcn071
  • Sadras, V., Echarte, L., Andrade, F., Profiles of leaf senescence during reproductive growth of sunflower and maize (2000) Annals of Botany, 85, pp. 187-195
  • Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis (2009) Science, 323, pp. 1053-1057
  • Balazadeh, S., Siddiqui, H., Allu, A.D., Matallana-Ramirez, L.P., Caldana, C., A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence (2010) Plant J, 62, pp. 250-264
  • Hu, R., Qi, G., Kong, Y., Kong, D., Gao, Q., Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa (2010) BMC Plant Biol, 10, p. 145
  • Nuruzzaman, M., Manimekalai, R., Sharoni, A.M., Satoh, K., Kondoh, H., Genome-wide analysis of NAC transcription factor family in rice (2010) Gene, 465, pp. 30-44
  • Balazadeh, S., Kwasniewski, M., Caldana, C., Mehrnia, M., Zanor, M.I., ORS1, an HO-responsive NAC transcription factor, controls senescence in Arabidopsis thaliana (2011) Mol Plant, 4, pp. 346-360
  • Matallana-Ramirez, L.P., Rauf, M., Farage-Barhom, S., Dortay, H., Xue, G.P., NAC Transcription Factor ORE1 and Senescence-Induced BIFUNCTIONAL NUCLEASE1 (BFN1) Constitute a Regulatory Cascade in Arabidopsis (2013) Mol Plant
  • Guo, Y., Gan, S., AtNAP, a NAC family transcription factor, has an important role in leaf senescence (2006) The Plant Journal, 46, pp. 601-612
  • He, X.J., Mu, R.L., Cao, W.H., Zhang, Z.G., Zhang, J.S., AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development (2005) Plant J, 44, pp. 903-916
  • Jensen, M.K., Kjaersgaard, T., Nielsen, M.M., Galberg, P., Petersen, K., The Arabidopsis thaliana NAC transcription factor family: Structure-function relationships and determinants of ANAC019 stress signalling (2010) Biochem J, 426, pp. 183-196
  • Huang, H., Wang, Y., Wang, S., Wu, X., Yang, K., Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium (2012) Plant Sci, 193-194, pp. 18-27
  • Wu, A., Allu, A.D., Garapati, P., Siddiqui, H., Dortay, H., JUNGBRUNNEN1, a reactive oxygen species-responsive NAC transcription factor, regulates longevity in Arabidopsis (2012) Plant Cell, 24, pp. 482-506
  • De Zelicourt, A., Diet, A., Marion, J., Laffont, C., Ariel, F., Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence (2012) Plant J, 70, pp. 220-230
  • Shah, S.T., Pang, C., Fan, S., Song, M., Arain, S., Isolation and expression profiling of GhNAC transcription factor genes in cotton (Gossypium hirsutum L.) during leaf senescence and in response to stresses (2013) Gene, 531, pp. 220-234
  • Su, H., Zhang, S., Yuan, X., Chen, C., Wang, X.F., Genome-wide analysis and identification of stress-responsive genes of the NAM-ATAF1,2-CUC2 transcription factor family in apple (2013) Plant Physiol Biochem, 71, pp. 11-21
  • Singh, A.K., Sharma, V., Pal, A.K., Acharya, V., Ahuja, P.S., Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) (2013) DNA Res, 20, pp. 403-423
  • Wang, Y.X., Characterization of a novel Medicago sativa NAC transcription factor gene involved in response to drought stress (2013) Mol Biol Rep, 40, pp. 6451-6458
  • Zhou, Y., Huang, W., Liu, L., Chen, T., Zhou, F., Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence (2013) BMC Plant Biol, 13, p. 132
  • Ying, L., Chen, H., Cai, W., BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus (2014) Plant Physiol Biochem, 79 C, pp. 77-87
  • Mao, X., Chen, S., Li, A., Zhai, C., Jing, R., Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerances in Arabidopsis (2014) PLoS ONE, 9, pp. e84359
  • Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., Ecker, J.R., EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis (1999) Science, 284 (5423), pp. 2148-2152. , DOI 10.1126/science.284.5423.2148
  • Bisson, M.M., Bleckmann, A., Allekotte, S., Groth, G., EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1 (2009) Biochem J, 424, pp. 1-6
  • Manavella, P.A., Arce, A.L., Dezar, C.A., Bitton, F., Renou, J.-P., Crespi, M., Chan, R.L., Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor (2006) Plant Journal, 48 (1), pp. 125-137. , DOI 10.1111/j.1365-313X.2006.02865.x
  • Kiniry, J.R., Blanchet, R., Williams, J.R., Texier, V., Jones, K., Sunflower simulation using the EPIC and ALMANAC models (1992) Field Crops Research, 30, pp. 403-423
  • Inskeep, W.P., Bloom, P.R., Extinction coefficients of chlorophyll a and B in n,n-dimethylformamide and 80% acetone (1985) Plant Physiol, 77, pp. 483-485
  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebus, P.A., Smith, F., Colorimetric method for the determination of sugars and related substances (1956) Analytical Chemistry, 28, pp. 350-356
  • Dumas, A., (1826) Annales de Chimie, 33, p. 342
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., (2012) nlme: Linear and Nonlinear Mixed Effects Models. R Package. 3.1-105 Ed., , Team tRDC
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., (2013) Grupo InfoStat F, , http://www.infostat.com.ar, Universidad Nacional de Córdoba, Argentina. Available: editor. ed
  • Al-Shahrour, F., Arbiza, L., Dopazo, H., Huerta-Cepas, J., Minguez, P., From genes to functional classes in the study of biological systems (2007) BMC Bioinformatics, 8, p. 114
  • Al-Shahrour, F., Minguez, P., Vaquerizas, J.M., Conde, L., Dopazo, J., BABELOMICS: A suite of web tools for functional annotation and analysis of groups of genes in high-throughput experiments (2005) Nucleic Acids Research, 33 (WEB. SERV. ISS.), pp. W460-W464. , DOI 10.1093/nar/gki456
  • Fernandez, P., Di Rienzo, J.A., Moschen, S., Dosio, G.A., Aguirrezabal, L.A., Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis (2011) Plant Cell Rep, 30, pp. 63-74
  • Rozen, S., Skaletsky, H., Primer3 on the WWW for general users and for biologist programmers (2000) Methods Mol Biol, 132, pp. 365-386
  • Ruijter, J.M., Ramakers, C., Hoogaars, W.M., Karlen, Y., Bakker, O., Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data (2009) Nucleic Acids Res, 37, pp. e45
  • (2009) Facultad de Ciencias Agropecuarias, , https://sites.google.com/site/fgstatistics/, fgStatistics Di Rienzo JA, editor. Universidad Nacional de Córdoba, Argentina
  • Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acid Research, 29, pp. e45. , 2001
  • Barozai, M.Y., Baloch, I.A., Din, M., Identification of MicroRNAs and their targets in Helianthus (2012) Mol Biol Rep, 39, pp. 2523-2532
  • Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D., Basic local alignment search tool (1990) Journal of Molecular Biology, 215, pp. 403-410
  • Woo, H.R., Kim, J.H., Kim, J., Lee, U., Song, I.J., The RAV1 transcription factor positively regulates leaf senescence in Arabidopsis (2010) J Exp Bot, 61, pp. 3947-3957
  • He, Y., Tang, W., Swain, J.D., Green, A.L., Jack, T.P., Gan, S., Networking senescence-regulating pathways by using arabidopsis enhancer trap lines (2001) Plant Physiology, 126 (2), pp. 707-716. , DOI 10.1104/pp.126.2.707
  • Hickman, R., Hill, C., Penfold, C.A., Breeze, E., Bowden, L., A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves (2013) Plant J, 75, pp. 26-39
  • Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Pyung, O.L., Hong, G.N., Lin, J.-F., Leaver, C.J., Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis (2005) Plant Journal, 42 (4), pp. 567-585. , DOI 10.1111/j.1365-313X.2005.02399.x
  • Devaiah, B.N., Madhuvanthi, R., Karthikeyan, A.S., Raghothama, K.G., Phosphate starvation responses and gibberellic acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis (2009) Mol Plant, 2, pp. 43-58
  • Fowler, S., Thomashow, M.F., Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway (2002) Plant Cell, 14 (8), pp. 1675-1690. , DOI 10.1105/tpc.003483
  • Lee, D., Polisensky, D.H., Braam, J., Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: A focus on calmodulin-like and XTH genes (2005) New Phytologist, 165 (2), pp. 429-444. , DOI 10.1111/j.1469-8137.2004.01238.x
  • Sohn, K.H., Lee, S.C., Jung, H.W., Hong, J.K., Hwang, B.K., Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance (2006) Plant Molecular Biology, 61 (6), pp. 897-915. , DOI 10.1007/s11103-006-0057-0
  • Manavella, P.A., Dezar, C.A., Bonaventure, G., Baldwin, I.T., Chan, R.L., HAHB4, a sunflower HD-Zip protein, integrates signals from the jasmonic acid and ethylene pathways during wounding and biotic stress responses (2008) The Plant Journal, 56, pp. 376-388
  • Manavella, P.A., Dezar, C.A., Ariel, F.D., Drincovich, M.F., Chan, R.L., The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes (2008) Journal of Experimental Botany, 59, pp. 3143-3155
  • Schafleitner, R., Gutierrez, R.R.O., Gaudin, A., Alvarado, A.C.A., Martinez, G.N., Tincopa, M.L.R., Bolivar, L.A., Bonierbale, M., Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress (2007) Plant Physiology and Biochemistry, 45 (9), pp. 673-690. , DOI 10.1016/j.plaphy.2007.06.003, PII S098194280700126X
  • Sato, Y., Antonio, B., Namiki, N., Motoyama, R., Sugimoto, K., Field transcriptome revealed critical developmental and physiological transitions involved in the expression of growth potential in japonica rice (2011) BMC Plant Biol, 11, p. 10

Citas:

---------- APA ----------
Moschen, S., Luoni, S.B., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P. & Heinz, R.A. (2014) . Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.). PLoS ONE, 9(8).
http://dx.doi.org/10.1371/journal.pone.0104379
---------- CHICAGO ----------
Moschen, S., Luoni, S.B., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P., et al. "Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.)" . PLoS ONE 9, no. 8 (2014).
http://dx.doi.org/10.1371/journal.pone.0104379
---------- MLA ----------
Moschen, S., Luoni, S.B., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P., et al. "Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.)" . PLoS ONE, vol. 9, no. 8, 2014.
http://dx.doi.org/10.1371/journal.pone.0104379
---------- VANCOUVER ----------
Moschen, S., Luoni, S.B., Paniego, N.B., Hopp, H.E., Dosio, G.A.A., Fernandez, P., et al. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.). PLoS ONE. 2014;9(8).
http://dx.doi.org/10.1371/journal.pone.0104379