Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Pseudomonas extremaustralis produces mainly polyhydroxybutyrate (PHB), a short chain length polyhydroxyalkanoate (sclPHA) infrequently found in Pseudomonas species. Previous studies with this strain demonstrated that PHB genes are located in a genomic island. In this work, the analysis of the genome of P. extremaustralis revealed the presence of another PHB cluster phbFPX, with high similarity to genes belonging to Burkholderiales, and also a cluster, phaC1ZC2D, coding for medium chain length PHA production (mclPHA). All mclPHA genes showed high similarity to genes from Pseudomonas species and interestingly, this cluster also showed a natural insertion of seven ORFs not related to mclPHA metabolism. Besides PHB, P. extremaustralis is able to produce mclPHA although in minor amounts. Complementation analysis demonstrated that both mclPHA synthases, PhaC1 and PhaC2, were functional. RT-qPCR analysis showed different levels of expression for the PHB synthase, phbC, and the mclPHA synthases. The expression level of phbC, was significantly higher than the obtained for phaC1 and phaC2, in late exponential phase cultures. The analysis of the proteins bound to the PHA granules showed the presence of PhbC and PhaC1, whilst PhaC2 could not be detected. In addition, two phasin like proteins (PhbP and PhaI) associated with the production of scl and mcl PHAs, respectively, were detected. The results of this work show the high efficiency of a foreign gene (phbC) in comparison with the mclPHA core genome genes (phaC1 and phaC2) indicating that the ability of P. extremaustralis to produce high amounts of PHB could be explained by the different expression levels of the genes encoding the scl and mcl PHA synthases. © 2014 Catone et al.

Registro:

Documento: Artículo
Título:High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes
Autor:Catone, M.V.; Ruiz, J.A.; Castellanos, M.; Segura, D.; Espin, G.; López, N.I.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Investigaciones en Biociencias Agrícolas Y Ambientales, CONICET, Buenos Aires, Argentina
Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
IQUIBICEN, CONICET, Buenos Aires, Argentina
Palabras clave:bacterial protein; Phal protein; PhbP protein; poly(3 hydroxybutyric acid); polyhydroxyalkanoate synthase; unclassified drug; acyltransferase; bacterial protein; hydroxybutyric acid; poly(3-hydroxyalkanoic acid) synthase; article; bacterial gene; bacterial genome; bacterial growth; bacterial metabolism; Burkholderiales; gene cluster; gene expression; gene insertion; genetic code; genetic complementation; genetic organization; genetic similarity; genome analysis; nonhuman; open reading frame; phaC1 gene; phaC2 gene; PhbC gene; Pseudomonas; Pseudomonas extremaustralis; genetics; horizontal gene transfer; metabolism; Pseudomonas; Acyltransferases; Bacterial Proteins; Gene Transfer, Horizontal; Genes, Bacterial; Hydroxybutyrates; Pseudomonas
Año:2014
Volumen:9
Número:6
DOI: http://dx.doi.org/10.1371/journal.pone.0098873
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:poly(3 hydroxybutyric acid), 26063-00-3; acyltransferase, 9012-30-0, 9054-54-0; hydroxybutyric acid, 1320-61-2, 35054-79-6; Acyltransferases; Bacterial Proteins; Hydroxybutyrates; poly(3-hydroxyalkanoic acid) synthase
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n6_p_Catone

Referencias:

  • Hazer, B., Steinbuchel, A., Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications (2007) Applied Microbiology and Biotechnology, 74 (1), pp. 1-12. , DOI 10.1007/s00253-006-0732-8
  • De Eugenio, L.I., Escapa, I.F., Morales, V., Dinjaski, N., Galán, B., The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance (2010) Environ Microbiol, 12, pp. 207-221
  • Huijberts, G.N., De Rijk, T.C., De Waard, P., Eggink, G., 13C nuclear magnetic resonance studies of Pseudomonas putida fatty acid metabolic routes involved in poly(3-hydroxyalkanoate) synthesis (1994) J Bacteriol, 176, pp. 1661-1666
  • Kessler, B., Palleroni, N.J., Taxonomic implications of synthesis of poly-beta-hydroxybutyrate and other poly-beta-hydroxyalkanoates by aerobic pseudomonads (2000) International Journal of Systematic and Evolutionary Microbiology, 50 (2), pp. 711-713
  • Diard, S., Carlier, J.-P., Ageron, E., Grimont, P.A.D., Langlois, V., Guerin, P., Bouvet, O.M.M., Accumulation of poly(3-hydroxybutyrate) from octanoate in different Pseudomonas belonging to the rRNA homology group I (2002) Systematic and Applied Microbiology, 25 (2), pp. 183-188
  • López, N.I., Pettinari, M.J., Stackebrandt, E., Tribelli, P.M., Potter, M., Pseudomonas extremaustralis sp. Nova poly(3-hydroxybutyrate) producer isolated from an Antarctic environment (2009) Curr Microbiol, 59, pp. 514-519
  • Ayub, N.D., Julia, P.M., Mendez, B.S., Lopez, N.I., Impaired polyhydroxybutyrate biosynthesis from glucose in Pseudomonas sp. 14-3 is due to a defective beta-ketothiolase gene (2006) FEMS Microbiology Letters, 264 (1), pp. 125-131. , DOI 10.1111/j.1574-6968.2006.00446.x
  • Ayub, N.D., Pettinari, M.J., Mendez, B.S., Lopez, N.I., The polyhydroxyalkanoate genes of a stress resistant Antarctic Pseudomonas are situated within a genomic island (2007) Plasmid, 58 (3), pp. 240-248. , DOI 10.1016/j.plasmid.2007.05.003, PII S0147619X07000741
  • Tribelli, P.M., Raiger Iustman, L.J., Catone, M.V., Di Martino, C., Revale, S., Genome sequence of the polyhydroxybutyrate producer Pseudomonas extremaustralis, a highly stress-resistant Antarctic bacterium (2012) J Bacteriol, 194, pp. 2381-2382
  • Huisman, G.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., Witholt, B., Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans: Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA (1991) Journal of Biological Chemistry, 266 (4), pp. 2191-2198
  • Meselson, M., Yuan, R., DNA restriction enzyme from E. Coli (1968) Nature, 217, pp. 1110-1114
  • Simon, R., Priefer, U., Puhler, A., A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria (1983) Bio/Technology, 1 (9), pp. 784-791
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176
  • Jaenecke, S., Díaz, E., Construction of plasmid vectors bearing a NotIexpression cassette based on the lac promoter (1999) Int Microbiol, 2, pp. 29-31
  • Langille, M.G.I., Brinkman, F.S.L., IslandViewer: An integrated interface for computational identification and visualization of genomic islands (2009) Bioinformatics, 25, pp. 664-665
  • Friedrich, B., Hogrefe, C., Schlegel, H.G., Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus (1981) Journal of Bacteriology, 147 (1), pp. 198-205
  • Ostle, A.G., Holt, J.G., Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate (1982) Applied and Environmental Microbiology, 44 (1), pp. 238-241
  • Braunegg, G., Sonnleitner, B., Lafferty, R.M., A rapid gas chromatographic method for the determination of poly beta hydroxybutyric acid in microbial biomass (1978) European Journal of Applied Microbiology and Biotechnology, 6 (1), pp. 29-37
  • De Eugenio, L.I., Galán, B., Escapa, I.F., Maestro, B., Sanz, J.M., The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442 (2010) Env Microbiol, 12, pp. 1591-1603
  • Jendrossek, D., Peculiarities of PHA granules preparation and PHA depolymerase activity determination (2007) Appl Microbiol Biotech, 74, pp. 1186-1196
  • Lowry, O.H., Rosebrough, N.J., Far, A.L., Randall, R.J., Protein measure with the Folin-phenol reagent (1951) J Biol Chem, 193, pp. 265-267
  • Shagger, H., Von Jagow, G., Tricine-Sodium Dodecyl sulfate-polyacrylamide gel electrophoresis for separation of protein in the range from 1 to 100 kDa (1987) Anal Biochem, 166, pp. 386-1379
  • Weber, K., Osborn, M., The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis (1969) J Biol Chem, 244, pp. 4406-4412
  • Prieto, M.A., Buhler, B., Jung, K., Witholt, B., Kessler, B., PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes (1999) Journal of Bacteriology, 181 (3), pp. 858-868
  • Solaiman, D.K.Y., Ashby, R.D., Licciardello, G., Catara, V., Genetic organization of pha gene locus affects phaC expression, poly(hydroxyalkanoate) composition and granule morphology in Pseudomonas corrugata (2008) J Ind Microbiol Biotech, 35, pp. 111-120
  • Hoffmann, N., Rehm, B.H.A., Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa (2004) FEMS Microbiology Letters, 237 (1), pp. 1-7. , DOI 10.1016/j.femsle.2004.06.029, PII S0378109704004483
  • Silby, M.W., Cerdeño-Tárraga, A.M., Vernikos, G.S., Giddens, S.R., Jackson, R.W., Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens (2009) Genome Biol, 10, pp. R51
  • Rehm, B.H., Polyester synthases: Natural catalysts for plastics (2003) Biochem J, 15, pp. 15-33
  • Yan, Y., Yang, J., Dou, Y., Chen, M., Ping, S., Peng, J., Lu, W., Jin, Q., Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501 (2008) Proceedings of the National Academy of Sciences of the United States of America, 105 (21), pp. 7564-7569. , http://www.pnas.org/cgi/reprint/105/21/7564, DOI 10.1073/pnas.0801093105
  • Setubal, J.C., Dos Santos, P., Goldman, B.S., Ertesvag, H., Espin, G., Genome sequence of Azotobacter vinelandii, an obligate aerobe specialized to support diverse anaerobic metabolic processes (2009) J Bacteriol, 191, pp. 4534-4545
  • Knoll, M., Hamm, T.M., Wagner, F., Martinez, V., Pleiss, J., The PHA Depolymerase Engineering Database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases (2009) BMC Bioinformatics, 8, pp. 1-8
  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antartic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66
  • Tribelli, P.M., López, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the novel Antarctic species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547
  • Timm, A., Steinbüchel, A., Cloning and molecular analysis of the poly(3- hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PAO1 (1992) J Biol Chem, 209, pp. 15-30
  • Galán, B., Dinjaski, N., Maestro, B., De Eugenio, L.I., Escapa, I.F., Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442 (2011) Molecular Microbiol, 79, pp. 402-418
  • Conte, E., Catara, V., Greco, S., Russo, M., Alicata, R., Strano, L., Lombardo, A., Catara, A., Regulation of polyhydroxyalkanoate synthases (phaC1 and phaC2) gene expression in Pseudomonas corrugata (2006) Applied Microbiology and Biotechnology, 72 (5), pp. 1054-1062. , DOI 10.1007/s00253-006-0373-y
  • De Roo, G., Ren, Q., Witholt, B., Kessler, B., Development of an improved in vitro activity assay for medium chain length PHA polymerases based on CoenzymeA release measurements (2000) Journal of Microbiological Methods, 41 (1), pp. 1-8. , DOI 10.1016/S0167-7012(00)00129-9, PII S0167701200001299
  • Pötter, M., Müller, H., Reinecke, F., Wieczorek, R., Fricke, F., The complex structure of polyhydroxybutyrate (PHB) granule: Four orthologous and paralogous phasins occur in Ralstonia eutropha (2004) Microbiology, 150, pp. 2301-2311
  • Tirapelle, E.F., Muller-Santos, M., Tadra-Sfeir, M.Z., Kadowaki, M.A.S., Steffens, M.B.R., Identification of proteins associated with polyhydroxybutyrate granules from Herbaspirillum seropedicae SmR1 - Old partners, New players (2013) PLoS ONE, 8 (9), pp. e75066. , doi:10.1371/journal.pone.0075066
  • Pettinari, M.J., Chaneton, L., Vazquez, G., Steinbuchel, A., Mendez, B.S., Insertion sequence-like elements associated with putative polyhydroxybutyrate regulatory genes in Azotobacter sp. FA8 (2003) Plasmid, 50 (1), pp. 36-44. , DOI 10.1016/S0147-619X(03)00009-X
  • Ren, Q., De Roo, G., Ruth, K., Witholt, B., Zinn, M., Simultaneous accumulation and degradation of polyhydroxyalkanoates: Futile cycle or clever regulation? (2009) Biomacromolecules, 10, pp. 916-922
  • Jendrossek, D., Pfeiffer, D., New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate) (2014) Environ Microbiol, , doi:10.1111/1462-2920.12356
  • Pfeiffer, D., Wahl, A., Jendrossek, D., Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16 (2011) Mol Microbiol, 82, pp. 936-951
  • Han, M.-J., Park, S.J., Lee, J.W., Min, B.-H., Lee, S.Y., Kim, S.-J., Yoo, J.S., Analysis of Poly(3-hydroxybutyrate) granule-associated proteome in recombinant Escherichia coli (2006) Journal of Microbiology and Biotechnology, 16 (6), pp. 901-910
  • De Almeida, A., Catone, M.V., Rhodius, V., Gross, C., Pettinari, M.J., Unexpected stress-reducing effect of PhaP, a poly(3-hydroxybutyrate) granule-associated protein, in Escherichia coli (2011) Appl Environ Microbiol, 77, pp. 6622-6629
  • Pötter, M., Müller, H., Reinecke, F., Wieczorek, R., Fricke, F., The complex structure of polyhydroxybutyrate (PHB) granules: Four orthologous and paralogous phasins occur in Ralstonia eutropha (2004) Microbiology, 150, pp. 2301-2311
  • Tortajada, M., Ferreira Da Silva, L., Prieto, M.A., Second-generation functionalized medium chain-length polyhydroxyalkanoates: The gateway to high-value bioplastic applications (2013) Int Microbiol, 16, pp. 1-15
  • Matsusaki, H., Manji, S., Taguchi, K., Kato, M., Fukui, T., Doi, Y., Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3 (1998) Journal of Bacteriology, 180 (24), pp. 6459-6467
  • Hu, F., You, S., Inactivation of type I polyhydroxyalkanoate synthase in Aeromonas hydrophila resulted in discovery of another potential PHA synthase (2007) Journal of Industrial Microbiology and Biotechnology, 34 (3), pp. 255-260. , DOI 10.1007/s10295-006-0180-6

Citas:

---------- APA ----------
Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G. & López, N.I. (2014) . High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS ONE, 9(6).
http://dx.doi.org/10.1371/journal.pone.0098873
---------- CHICAGO ----------
Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G., López, N.I. "High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes" . PLoS ONE 9, no. 6 (2014).
http://dx.doi.org/10.1371/journal.pone.0098873
---------- MLA ----------
Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G., López, N.I. "High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes" . PLoS ONE, vol. 9, no. 6, 2014.
http://dx.doi.org/10.1371/journal.pone.0098873
---------- VANCOUVER ----------
Catone, M.V., Ruiz, J.A., Castellanos, M., Segura, D., Espin, G., López, N.I. High polyhydroxybutyrate production in Pseudomonas extremaustralis is associated with differential expression of horizontally acquired and core genome polyhydroxyalkanoate synthase genes. PLoS ONE. 2014;9(6).
http://dx.doi.org/10.1371/journal.pone.0098873