Artículo

Babuin, M.F.; Campestre, M.P.; Rocco, R.; Bordenave, C.D.; Escaray, F.J.; Antonelli, C.; Calzadilla, P.; Gárriz, A.; Serna, E.; Carrasco, P.; Ruiz, O.A.; Menendez, A.B. "Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization" (2014) PLoS ONE. 9(5)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The current knowledge regarding transcriptomic changes induced by alkalinity on plants is scarce and limited to studies where plants were subjected to the alkaline salt for periods not longer than 48 h, so there is no information available regarding the regulation of genes involved in the generation of a new homeostatic cellular condition after long-term alkaline stress. Lotus japonicus is a model legume broadly used to study many important physiological processes including biotic interactions and biotic and abiotic stresses. In the present study, we characterized phenotipically the response to alkaline stress of the most widely used L. japonicus ecotypes, Gifu B-129 and MG-20, and analyzed global transcriptome of plants subjected to 10 mM NaHCO 3 during 21 days, by using the Affymetrix Lotus japonicus GeneChip®. Plant growth assessment, gas exchange parameters, chlorophyll a fluorescence transient (OJIP) analysis and metal accumulation supported the notion that MG-20 plants displayed a higher tolerance level to alkaline stress than Gifu B-129. Overall, 407 and 459 probe sets were regulated in MG-20 and Gifu B-129, respectively. The number of probe sets differentially expressed in roots was higher than that of shoots, regardless the ecotype. Gifu B-129 and MG-20 also differed in their regulation of genes that could play important roles in the generation of a new Fe/Zn homeostatic cellular condition, synthesis of plant compounds involved in stress response, protein-degradation, damage repair and root senescence, as well as in glycolysis, gluconeogenesis and TCA. In addition, there were differences between both ecotypes in the expression patterns of putative transcription factors that could determine distinct arrangements of flavonoid and isoflavonoid compounds. Our results provided a set of selected, differentially expressed genes deserving further investigation and suggested that the L. japonicus ecotypes could constitute a useful model to search for common and distinct tolerance mechanisms to long-term alkaline stress response in plants. © 2014 Babuin et al.

Registro:

Documento: Artículo
Título:Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization
Autor:Babuin, M.F.; Campestre, M.P.; Rocco, R.; Bordenave, C.D.; Escaray, F.J.; Antonelli, C.; Calzadilla, P.; Gárriz, A.; Serna, E.; Carrasco, P.; Ruiz, O.A.; Menendez, A.B.
Filiación:IIB-INTECH/Univ. Nac. Gen. S. Martin-Consejo Nac. Invest. Cient. y Tec. (IIB-INTECH/UNSAM-CONICET), Chascomús, Argentina
Unidad Central de Investigación en Medicina-INCLIVA, Universitat de Valencia, Valencia, Spain
Departamento de Bioquímica y Biología Vegetal, Universitat de Valencia, Valencia, Spain
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:bicarbonate; cadmium; flavonoid; iron; isoflavonoid; zinc; antacid agent; bicarbonate; chlorophyll; iron; zinc; alkalinity; article; bioaccumulation; chlorophyll content; controlled study; ecotype; gas exchange; gene control; gene expression; gene expression profiling; gene probe; genetic transcription; gluconeogenesis; glycolysis; homeostasis; Lotus japonicus; nonhuman; nucleotide sequence; phenotype; plant genetics; plant growth; plant physiology; plant root; plant stress; protein degradation; senescence; sequence analysis; DNA microarray; drug effects; evapotranspiration; gene expression profiling; gene expression regulation; Lotus; metabolism; physiology; plant; real time polymerase chain reaction; species difference; Antacids; Chlorophyll; Gene Expression Profiling; Gene Expression Regulation, Plant; Iron; Lotus; Oligonucleotide Array Sequence Analysis; Plant Roots; Plant Shoots; Plant Transpiration; Real-Time Polymerase Chain Reaction; Sodium Bicarbonate; Species Specificity; Zinc
Año:2014
Volumen:9
Número:5
DOI: http://dx.doi.org/10.1371/journal.pone.0097106
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:bicarbonate, 144-55-8, 71-52-3; cadmium, 22537-48-0, 7440-43-9; iron, 14093-02-8, 53858-86-9, 7439-89-6; zinc, 7440-66-6, 14378-32-6; chlorophyll, 1406-65-1, 15611-43-5; Antacids; Chlorophyll; Iron; Sodium Bicarbonate; Zinc
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n5_p_Babuin

Referencias:

  • Tanji, K.K., (1996) Agricultural Salinity Assessment and Management, , Reston, Virginia: ASCE Publications
  • Alam, S.M., Naqvi, S.S.M., Ansari, R., Impact of soil pH on nutrient uptake by crop plants (1999) Handbook of Plant and Crop Stress, pp. 51-60
  • Marschner, H., (1995) Mineral Nutrition of Higher Plants, , London, UK: Academic Press Limited
  • Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Yamaguchi-Shinozaki, K., Monitoring Expression Profiles of Rice Genes under Cold, Drought, and High-Salinity Stresses and Abscisic Acid Application Using cDNA Microarray and RNA Gel-Blot Analyses (2003) Plant Physiology, 133 (4), pp. 1755-1767. , DOI 10.1104/pp.103.025742
  • Guo, P., Baum, M., Grando, S., Ceccarelli, S., Bai, G., Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage (2009) Journal of Experimental Botany, 60, pp. 3531-3544
  • Ge, Y., Li, Y., Lv, D.-K., Bai, X., Ji, W., Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors (2011) Functional & Integrative Genomics, 11, pp. 369-379
  • Ge, Y., Li, Y., Zhu, Y.M., Bai, X., Lv, D.K., Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment (2010) BMC Plant Biology, 10, pp. 153-167
  • Li, H., Dong, Y., Yin, H., Wang, N., Yang, J., Characterization of the stress associated microRNAs in Glycine max by deep sequencing (2011) BMC Plant Biology, 11, pp. 170-170
  • Jin, H., Kim, H.R., Plaha, P., Liu, S.K., Park, J.Y., Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis (2008) Plant Science, 175, pp. 784-792
  • Wang, Y., Chu, Y., Liu, G., Wang, M.-H., Jiang, J., Hou, Y., Qu, G., Yang, C., Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library (2007) Journal of Plant Physiology, 164 (1), pp. 78-89. , DOI 10.1016/j.jplph.2005.12.006, PII S0176161706000289
  • Wang, Y., Yang, C., Liu, G., Jiang, J., Development of a cDNA microarray to identify gene expression of Puccinellia tenuiflora under saline-alkali stress (2007) Plant Physiology and Biochemistry, 45 (8), pp. 567-576. , DOI 10.1016/j.plaphy.2007.05.006, PII S0981942807001088
  • Wang, Y., Ma, H., Liu, G., Xu, C., Zhang, D., Analysis of Gene Expression Profile of Limonium bicolor under NaHCO 3 Stress Using cDNA Microarray (2008) Plant Molecular Biology Reporter, 26, pp. 241-254
  • Sachs, M.M., Ho, T.H.D., Alteration of Gene Expression During Environmental Stress in Plants (1986) Annual Review of Plant Physiology, 37, pp. 363-376
  • Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils (2012) Plant Science, 182, pp. 121-133
  • Handberg, K., Stougaard, J., Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics (1992) Plant Journal, 2, pp. 487-496
  • Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., Kato, T., Genome structure of the legume, Lotus japonicus (2008) DNA Research, 15, pp. 227-239
  • Sanchez, D.H., Lippold, F., Redestig, H., Hannah, M.A., Erban, A., Kramer, U., Kopka, J., Udvardi, M.K., Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus (2008) Plant Journal, 53 (6), pp. 973-987. , DOI 10.1111/j.1365-313X.2007.03381.x
  • Díaz, P., Betti, M., Sánchez, D.H., Udvardi, M.K., Monza, J., Deficiency in plastidic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress (2010) New Phytologist, 188, pp. 1001-1013
  • Rowley, E.R., Mockler, T.C., (2011) Plant Abiotic Stress: Insights from the Genomics Era, pp. 346-346. , Shanker A, Venkateswarlu B, editors. 2011 ed. Rijeka, Croatia: InTech
  • Hashiguchi, M., Tsuruta, S.-I., Akashi, R., Morphological Traits of Lotus japonicus (Regal) Ecotypes Collected in Japan (2011) Interdisciplinary Bio Central, 3, pp. 4-7
  • Hoagland, D.R., Arnon, D.I., (1950) The Water-culture Method for Growing Plants Without Soil, pp. 32-32. , Berkeley: The College of Agriculture University of California
  • Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis (2012) Journal of Plant Growth Regulation, 31, pp. 448-459
  • Lichtenthaler, F.W., Karl Freudenberg, Burckhardt Helferich, Hermann O. L. Fischer A centennial tribute (1987) Carbohydrate Research, 164, pp. 1-22
  • Chen, L.-S., Smith, B.R., Cheng, L., CO2 assimilation, photosynthetic enzymes, and carbohydrates of 'Concord' grape leaves in response to iron supply (2004) Journal of the American Society for Horticultural Science, 129 (5), pp. 738-744
  • Strasser, R., Srivastava, A., Tsimilli-Michael, M., The fluorescence transient as a tool to characterize and screen photosynthetic samples (2000) Probing Photosynthesis: Mechanisms, Regulation and Adaptation, pp. 445-483
  • Lohse, M., Nunes-Nesi, A., Krüger, P., Nagel, A., Hannemann, J., Robin: An Intuitive Wizard Application for R-Based Expression Microarray Quality Assessment and Analysis (2010) Plant Physiology, 153, pp. 642-651
  • Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Stitt, M., MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant Journal, 37 (6), pp. 914-939. , DOI 10.1111/j.1365-313X.2004.02016.x
  • Usadel, B., Nagel, A., Thimm, O., Redestig, H., Blaesing, O.E., Palacios-Rojas, N., Selbig, J., Stitt, M., Extension of the visualization tool MapMan to allow statistical analysis of arrays, display of coresponding genes, and comparison with known responses (2005) Plant Physiology, 138 (3), pp. 1195-1204. , DOI 10.1104/pp.105.060459
  • Paolocci, F., Robbins, M.P., Passeri, V., Hauck, B., Morris, P., The strawberry transcription factor FaMYB1 inhibits the biosynthesis of proanthocyanidins in Lotus corniculatus leaves (2011) Journal of Experimental Botany, 62, pp. 1189-1189
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., (2011) InfoStat Versión 2011, , http://www.infostat.com.ar, Argentina. Grupo InfoStat, FCA, Universidad Nacional de Córdoba
  • Pfaffl, M.W., A new mathematical model for relative quantification in realtime RT-PCR (2001) Nucleic Acids Research, 29, pp. 2003-2007
  • Cakmak, I., Tansley Review No. 111. Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species (2000) New Phytologist, 146, pp. 185-205
  • Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Towards a knowledge-based correction of iron chlorosis (2011) Plant Physiology and Biochemistry, 49, pp. 471-482
  • González Moreno, S., Perales Vela, H., Salcedo Alvarez, M.O., La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas (2008) Revista de Educación Bioquímica, 27, pp. 119-129
  • Pietrini, F., Chaudhuri, D., Thapliyal, A.P., Massacci, A., Analysis of chlorophyll fluorescence transients in mandarin leaves during a photo-oxidative cold shock and recovery (2005) Agriculture, Ecosystems and Environment, 106 (2-3 SPEC. ISS.), pp. 189-198. , DOI 10.1016/j.agee.2004.10.007
  • Calatayud, A., Barreno, E., Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl (2001) Environmental Pollution, 115, pp. 283-289
  • Roosta, H.R., Interaction between water alkalinity and nutrient solutio pH on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce (2011) Journal of Plant Nutrition, 34, pp. 717-731
  • Prakash, J.S.S., Srivastava, A., Strasser, R.J., Mohanty, P., Senescence-induced alterations in the photosystem II functions of Cucumis sativus cotyledons: Probing of senescence driven alterations of photosystem II by chlorophyll a fluorescence induction O-J-I-P transients (2003) Indian Journal of Biochemistry and Biophysics, 40 (3), pp. 160-168
  • Nielsen, K.A., Møller, B.L., (2005) Cytochrome P450s in Plants. Cytochrome P450, pp. 553-583. , Springer
  • Narusaka, Y., Narusaka, M., Seki, M., Umezawa, T., Ishida, J., Nakajima, M., Enju, A., Shinozaki, K., Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: Analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray (2004) Plant Molecular Biology, 55 (3), pp. 327-342. , DOI 10.1007/s11103-004-0685-1
  • Dietz, K.-J., Jacob, S., Oelze, M.-L., Laxa, M., Tognetti, V., De Miranda, S.M.N., Baier, M., Finkemeier, I., The function of peroxiredoxins in plant organelle redox metabolism (2006) Journal of Experimental Botany, 57 (8), pp. 1697-1709. , DOI 10.1093/jxb/erj160
  • Shinozaki, K., Yamaguchi-Shinozaki, K., Seki, M., Regulatory network of gene expression in the drought and cold stress responses (2003) Current Opinion in Plant Biology, 6 (5), pp. 410-417. , DOI 10.1016/S1369-5266(03)00092-X
  • Chinnusamy, V., Jagendorf, A., Zhu, J.-K., Understanding and improving salt tolerance in plants (2005) Crop Science, 45 (2), pp. 437-448
  • Kim, J., Kim, H.-Y., Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling (2006) FEBS Letters, 580 (22), pp. 5251-5256. , DOI 10.1016/j.febslet.2006.08.050, PII S001457930601043X
  • Shelton, D., Stranne, M., Mikkelsen, L., Pakseresht, N., Welham, T., Transcription Factors of Lotus: Regulation of Isoflavonoid Biosynthesis Requires Coordinated Changes in Transcription Factor Activity (2012) Plant Physiology, 159, pp. 531-547
  • Agati, G., Biricolti, S., Guidi, L., Ferrini, F., Fini, A., The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. Vulgare leaves (2011) Journal of Plant Physiology, 168, pp. 204-212
  • Goff, S.A., Cone, K.C., Chandler, V.L., Functional analysis of the transcriptional activator encoded by the maize B gene: Evidence for a direct functional interaction between two classes of regulatory proteins (1992) Genes & Development, 6, pp. 864-875
  • Nesi, N., Jond, C., Debeaujon, I., Caboche, M., Lepiniec, L., The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed (2001) Plant Cell, 13 (9), pp. 2099-2114. , DOI 10.1105/tpc.13.9.2099
  • Paolocci, F., Robbins, M.P., Madeo, L., Arcioni, S., Martens, S., Damiani, F., Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. Structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus (2007) Plant Physiology, 143 (1), pp. 504-516. , DOI 10.1104/pp.106.090886
  • Yoshida, K., Kume, N., Nakaya, Y., Yamagami, A., Nakano, T., Comparative analysis of the triplicate proathocyanidin regulators in Lotus japonicus (2010) Plant and Cell Physiology, 51, pp. 912-922
  • Huang, T.-L., Nguyen, Q., Fu, S.-F., Lin, C.-Y., Chen, Y.-C., Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots (2012) Plant Molecular Biology, 80, pp. 587-608
  • Aglawe, S.B., Fakrudin, B., Patole, C.B., Bhairappanavar, S.B., Koti, R.V., Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum (2012) Physiology and Molecular Biology of Plants, 18, pp. 287-300
  • Coudert, Y., Bès, M., Le, T.V.A., Pré, M., Guiderdoni, E., Transcript profiling of crown rootless1 mutant stem base reveals new elements associated with crown root development in rice (2011) BMC Genomics, 12, pp. 387-387
  • Ariel, F., Diet, A., Verdenaud, M., Gruber, V., Frugier, F., Environmental regulation of lateral root emergence in Medicago truncatula requires the HD-Zip I transcription factor HB1 (2010) The Plant Cell, 22, pp. 2171-2183
  • Guerinot, M.L., The ZIP family of metal transporters (2000) Biochimica et Biophysica Acta, 1465, pp. 190-198
  • Eide, D., Broderius, M., Fett, J., Guerinot, M.L., A novel iron-regulated metal transporter from plants identified by functional expression in yeast (1996) Proceedings of the National Academy of Sciences of the United States of America, 93 (11), pp. 5624-5628. , DOI 10.1073/pnas.93.11.5624
  • Zocchi, G., De Nisi, P., Dell'Orto, M., Espen, L., Gallina, P.M., Iron deficiency differently affects metabolic responses in soybean roots (2007) Journal of Experimental Botany, 58 (5), pp. 993-1000. , DOI 10.1093/jxb/erl259
  • Li, J.-Y., Fu, Y.-L., Pike, S.M., Bao, J., Tian, W., The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance (2010) The Plant Cell, 22, pp. 1633-1646
  • Nikolic, M., Cesco, S., Romheld, V., Varanini, Z., Pinton, R., Short-term interactions between nitrate and iron nutrition in cucumber (2007) Functional Plant Biology, 34 (5), pp. 402-408. , DOI 10.1071/FP07022
  • Alleva, K., Niemietz, C.M., Sutka, M., Maurel, C., Parisi, M., Tyerman, S.D., Amodeo, G., Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations (2006) Journal of Experimental Botany, 57 (3), pp. 609-621. , DOI 10.1093/jxb/erj046
  • Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D., Boutry, M., NpPDR1, a pleiotropic drug resistance-type ATP-binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense (2005) Plant Physiology, 139 (1), pp. 341-352. , DOI 10.1104/pp.105.062372
  • Kobae, Y., Sekino, T., Yoshioka, H., Nakagawa, T., Martinoia, E., Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection (2006) Plant and Cell Physiology, 47, pp. 309-318
  • Geisler, M., Murphy, A.S., The ABC of auxin transport: The role of p-glycoproteins in plant development (2006) FEBS Letters, 580 (4), pp. 1094-1102. , DOI 10.1016/j.febslet.2005.11.054, PII S0014579305014249, ABC Transporters
  • Thomas, C., Rajagopal, A., Windsor, B., Dudler, R., Lloyd, A., Roux, S.J., A role for ectophosphatase in xenobiotic resistance (2000) Plant Cell, 12 (4), pp. 519-533. , DOI 10.1105/tpc.12.4.519
  • Vierstra, R.D., Protein Degradation in Plants (1993) Annual Review of Plant Physiology and Plant Molecular Biology, 44, pp. 385-410
  • Field, B., Furniss, C., Wilkinson, A., Mithen, R., Expression of a Brassica isopropylmalate synthase gene in Arabidopsis perturbs both glucosinolate and amino acid metabolism (2006) Plant Molecular Biology, 60 (5), pp. 717-727. , DOI 10.1007/s11103-005-5547-y
  • Golldack, D., Popova, O.V., Dietz, K.-J., Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis (2002) Journal of Biological Chemistry, 277 (7), pp. 5541-5547. , DOI 10.1074/jbc.M106197200
  • Liu, Y., Dammann, C., Bhattacharyya, M.K., The matrix metalloproteinase gene GmMMp2 is activated in response to pathogenic infections in soybean (2001) Plant Physiology, 127 (4), pp. 1788-1797. , DOI 10.1104/pp.127.4.1788
  • Cho, C.W., Chung, E., Kim, K., Soh, H.A., Jeong, Y.K., Plasma membrane localization of soybean matrix metalloproteinase differentially induced by senescence and abiotic stress (2009) Biologia Plantarum, 53, pp. 461-467
  • Mukherjee, I., Campbell, N.H., Ash, J.S., Connolly, E.L., Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper (2006) Planta, 223, pp. 1178-1190
  • Pich, A., Manteuffel, R., Hillmer, S., Scholz, G., Schmidt, W., Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? (2001) Planta, 213 (6), pp. 967-976
  • Rogers, E.E., Guerinot, M.L., FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis (2002) Plant Cell, 14 (8), pp. 1787-1799. , DOI 10.1105/tpc.001495
  • Silverstone, A.L., Ciampaglio, C.N., Sun, T.-P., The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway (1998) Plant Cell, 10 (2), pp. 155-169. , DOI 10.1105/tpc.10.2.155
  • Zhang, X., Ju, H.-W., Chung, M.-S., Huang, P., Ahn, S.-J., The R-R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis (2011) Plant and Cell Physiology, 52, pp. 138-148
  • Callard, D., Axelos, M., Mazzolini, L., Novel molecular markers for late phases of the growth cycle of Arabidopsis thaliana cell-suspension cultures are expressed during organ senescence (1996) Plant Physiology, 112, pp. 705-715
  • Mazel, A., Leshem, Y., Tiwari, B.S., Levine, A., Induction of Salt and Osmotic Stress Tolerance by Overexpression of an Intracellular Vesicle Trafficking Protein AtRab7 (AtRabG3e) (2004) Plant Physiology, 134 (1), pp. 118-128. , DOI 10.1104/pp.103.025379
  • Read, S.M., Northcote, D.H., Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae (1983) Planta, 158, pp. 119-127
  • Dannenhoffer, J.M., Schulz, A., Skaggs, M.I., Bostwick, D.E., Thompson, G.A., Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits (1997) Planta, 201 (4), pp. 405-414. , DOI 10.1007/s004250050083
  • Balachandran, S., Xiang, Y., Schobert, C., Thompson, G.A., Lucas, W.J., Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata (1997) Proceedings of the National Academy of Sciences of the United States of America, 94 (25), pp. 14150-14155. , DOI 10.1073/pnas.94.25.14150
  • Escudero-Almanza, D.J., Ojeda-Barrios, D.L., Sida-Arreola, J.P., Hernández-Rodríguez, O.A., Chávez, E.S., Carbonic anhydrase and zinc in plant physiology (2012) Chilean Journal of Agricultural Research, 72, pp. 140-146
  • Rengel, Z., Carbonic Anhydrase Activity in Leaves of Wheat Genotypes Differing in Zn Efficiency (1995) Journal of Plant Physiology, 147, pp. 251-256
  • Bar-Akiva, A., Lavon, R., Carbonic anhydrase activity as an indicator of zinc deficiency in citrus leaves (1969) J Hort Sci, 44, pp. 359-362
  • Bordenave, C.D., Escaray, F.J., Menendez, A.B., Serna, E., Carrasco, P., Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae (2013) PLoS ONE, 8, pp. e83199-e83199
  • Allen, R.D., Dissection of oxidative stress tolerance using transgenic plants (1995) Plant Physiology, 107, p. 1049
  • Vieira, D.S.C., Rey, P., Plant thioredoxins are key actors in the oxidative stress response (2006) Trends in Plant Science, 11 (7), pp. 329-334. , DOI 10.1016/j.tplants.2006.05.005, PII S1360138506001300

Citas:

---------- APA ----------
Babuin, M.F., Campestre, M.P., Rocco, R., Bordenave, C.D., Escaray, F.J., Antonelli, C., Calzadilla, P.,..., Menendez, A.B. (2014) . Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization. PLoS ONE, 9(5).
http://dx.doi.org/10.1371/journal.pone.0097106
---------- CHICAGO ----------
Babuin, M.F., Campestre, M.P., Rocco, R., Bordenave, C.D., Escaray, F.J., Antonelli, C., et al. "Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization" . PLoS ONE 9, no. 5 (2014).
http://dx.doi.org/10.1371/journal.pone.0097106
---------- MLA ----------
Babuin, M.F., Campestre, M.P., Rocco, R., Bordenave, C.D., Escaray, F.J., Antonelli, C., et al. "Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization" . PLoS ONE, vol. 9, no. 5, 2014.
http://dx.doi.org/10.1371/journal.pone.0097106
---------- VANCOUVER ----------
Babuin, M.F., Campestre, M.P., Rocco, R., Bordenave, C.D., Escaray, F.J., Antonelli, C., et al. Response to long-term NaHCO3-derived alkalinity in model Lotus japonicus ecotypes Gifu B-129 and Miyakojima MG-20: Transcriptomic profiling and physiological characterization. PLoS ONE. 2014;9(5).
http://dx.doi.org/10.1371/journal.pone.0097106