Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ca2+ release into the cytosol through inositol 1,4,5-trisphosphate receptors (IP3Rs) plays a relevant role in numerous physiological processes. IP3R-mediated Ca2+ signals involve Ca2+-induced Ca2+-release (CICR) whereby Ca2+ release through one open IP3R induces the opening of other channels. IP3Rs are apparently organized in clusters. The signals can remain localized (i.e., Ca2+ puffs) if CICR is limited to one cluster or become waves that propagate between clusters. Ca2+ puffs are the building blocks of Ca2+ waves. Thus, there is great interest in determining puff properties, especially in view of the current controversy on the spatial distribution of activatable IP3Rs. Ca 2+ puffs have been observed in intact cells with optical techniques proving that they are intrinsically stochastic. Obtaining a correct picture of their dynamics then entails being able to detect the whole range of puff sizes. Ca2+ puffs are observed using visible single-wavelength Ca 2+ dyes, slow exogenous buffers (e.g., EGTA) to disrupt inter-cluster CICR and UV-photolyzable caged IP3. Single-wavelength dyes increase their fluorescence upon calcium binding producing images that are strongly dependent on their kinetic, transport and photophysical properties. Determining the artifacts that the imaging setting introduces is particularly relevant when trying to analyze the smallest Ca2+ signals. In this paper we introduce a method to estimate the expected signal-to-noise ratio of Ca 2+ imaging experiments that use single-wavelength dyes. The method is based on the Number and Brightness technique. It involves the performance of a series of experiments and their subsequent analysis in terms of a fluorescence fluctuation model with which the model parameters are quantified. Using the model, the expected signal-to-noise ratio is then computed. Equivalence classes between different experimental conditions that produce images with similar signal-tonoise ratios can then be established. The method may also be used to estimate the smallest signals that can reliably be observed with each setting. © 2014 Piegari et al.

Registro:

Documento: Artículo
Título:Fluorescence fluctuations and equivalence classes of Ca2+ imaging experiments
Autor:Piegari, E.; Lopez, L.; Perez Ipiña, E.; Ponce Dawson, S.
Filiación:Departamento de Física and IFIBA (CONICET), FCEyN-UBA, Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:calcium; calcium; fluorescent dye; fused heterocyclic rings; rhod-2; animal cell; article; calcium current; calcium signaling; controlled study; female; fluorescence analysis; fluorescence imaging; image analysis; mathematical model; molecular imaging; nonhuman; quantitative analysis; signal noise ratio; animal; fluorescence imaging; image processing; metabolism; procedures; Xenopus laevis; Animals; Calcium; Fluorescent Dyes; Heterocyclic Compounds, 3-Ring; Image Processing, Computer-Assisted; Optical Imaging; Signal-To-Noise Ratio; Xenopus laevis
Año:2014
Volumen:9
Número:4
DOI: http://dx.doi.org/10.1371/journal.pone.0095860
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:calcium, 7440-70-2, 14092-94-5; Calcium; Fluorescent Dyes; Heterocyclic Compounds, 3-Ring; rhod-2
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n4_p_Piegari

Referencias:

  • Berridge, M.J., Bootman, M.D., Lipp, P., Calcium-a life and death signal (1998) Nature, 395, pp. 645-648
  • Choe, C.-U., Ehrlich, B.E., The Inositol 1,4,5-Trisphosphate Receptor (IP3R) and Its Regulators: Sometimes Good and Sometimes Bad Teamwork (2006) Sci STKE, 2006, pp. re15
  • Smith, I.F., Parker, I., Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells (2009) Proc Natl Acad Sci U S A, 106, pp. 6404-6409
  • Thomas, D., Tovey, S.C., Collins, T.J., Bootman, M.D., Berridge, M.J., A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals (2000) Cell Calcium, 28, pp. 213-223
  • Sun, X.-P., Callamaras, N., Marchant, J.S., Parker, I., A continuum of InsP3-mediated elementary Ca2+ signalling events in Xenopus oocytes (1998) Journal of Physiology, 509 (1), pp. 67-80. , DOI 10.1111/j.1469-7793.1998.067bo.x
  • Bruno, L., Solovey, G., Ventura, A.C., Dargan, S., Dawson, S.P., Quantifying calcium fluxes underlying calcium puffs in Xenopus laevis oocytes (2010) Cell Calcium, 47, pp. 273-286
  • Callamaras, N., Marchant, J.S., Sun, X.-P., Parker, I., Activation and co-ordination of InsP3-mediated elementary Ca2+ events during global Ca2+ signals in Xenopus oocytes (1998) Journal of Physiology, 509 (1), pp. 81-91. , DOI 10.1111/j.1469-7793.1998.081bo.x
  • Takahashi, A., Camacho, P., Lechleiter, J.D., Herman, B., Measurement of intracellular calcium (1999) Physiological Reviews, 79 (4), pp. 1089-1125
  • Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W., Lechleiter, J.D., Chemical calcium indicators (2008) Methods, 46, pp. 143-151
  • Foskett, J.K., White, C., Cheung, K.-H., Mak, D.-O.D., Inositol trisphosphate receptor Ca2+ release channels (2007) Physiological Reviews, 87 (2), pp. 593-658. , http://physrev.physiology.org/cgi/reprint/87/2/593, DOI 10.1152/physrev.00035.2006
  • Marchant, J.S., Parker, I., Role of elementary Ca2+ puffs in generating repetitive Ca 2+ oscillations (2001) EMBO Journal, 20 (1-2), pp. 65-76. , DOI 10.1093/emboj/20.1.65
  • Diambra, L., Marchant, J.S., Inositol (1,4,5)-Trisphosphate Receptor Microarchitecture Shapes Ca2+ Puff Kinetics (2011) Biophysical Journal, 100, pp. 822-831
  • Solovey, G., Dawson, S.P., Intra-Cluster Percolation of Calcium Signals (2010) PLoS ONE, 5, pp. e8997
  • Fraiman, D., Pando, B., Dargan, S., Parker, I., Dawson, S.P., Analysis of puff dynamics in oocytes: Interdependence of puff amplitude and interpuff interval (2006) Biophysical Journal, 90 (11), pp. 3897-3907. , http://www.biophysj.org/cgi/reprint/90/11/3897, DOI 10.1529/biophysj.105.075911
  • Diambra, L., Marchant, J.S., Localization and socialization: Experimental insights into the functional architecture of IP3 receptors (2009) Chaos: An Interdisciplinary Journal of Nonlinear Science, 19
  • Taufiq Ur, R., Skupin, A., Falcke, M., Taylor, C.W., Clustering of InsP3 receptors by InsP3 retunes their regulation by InsP3 and Ca2+ (2009) Nature, 458, pp. 655-659
  • Digman, M.A., Dalal, R., Horwitz, A.F., Gratton, E., Mapping the number of molecules and brightness in the laser scanning microscope (2008) Biophys J, 94, pp. 2320-2332
  • Escobar, A.L., Velez, P., Kim, A.M., Cifuentes, F., Fill, M., Vergara, J.L., Kinetic properties of DM-nitrophen and calcium indicators: Rapid transient response to flash photolysis (1997) Pflugers Archiv European Journal of Physiology, 434 (5), pp. 615-631. , DOI 10.1007/s004240050444
  • Piegari, E., Lopez, L., Sigaut, L., Ponce Dawson, S., Studying Calcium Signal Reshaping by Buffers Observing the Competition of Two Dyes (2012) Biophysical Journal, 102, pp. 310a
  • Lopez, L., Sigaut, L., Dawson, S.P., Observing the Dynamics of Luminal and Cytosolic Calcium During IP3R-Mediated Calcium Signals (2014) Biophysical Journal, 106, pp. 531a-532a
  • Sigaut, L., Barella, M., Espada, R., Ponce, M.L., Dawson, S.P., Custom-made modification of a commercial confocal microscope to photolyze caged compounds using the conventional illumination module and its application to the observation of Inositol 1,4,5-trisphosphate-mediated calcium signals (2011) J Biomed Opt, 16, p. 066013
  • De Young, G.W., Keizer, J., A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration (1992) Proc Natl Acad Sci U S A, 89, pp. 9895-9899
  • Shuai, J., Rose, H.J., Parker, I., The number and spatial distribution of IP3 receptors underlying calcium puffs in Xenopus oocytes (2006) Biophysical Journal, 91 (11), pp. 4033-4044. , http://www.biophysj.org/cgi/reprint/91/11/4033.pdf, DOI 10.1529/biophysj.106.088880
  • Minta, A., Kao, J.P.Y., Tsien, R.Y., Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores (1989) Journal of Biological Chemistry, 264 (14), pp. 8171-8178
  • Dalal, R.B., Digman, M.A., Horwitz, A.F., Vetri, V., Gratton, E., Determination of particle number and brightness using a laser scanning confocal microscope operating in the analog mode (2008) Microscopy Research and Technique, 71, pp. 69-81
  • Smith, G.D., Keizer, J.E., Stern, M.D., Lederer, W.J., Cheng, H., A simple numerical model of calcium spark formation and detection in cardiac myocytes (1998) Biophysical Journal, 75 (1), pp. 15-32
  • Soeller, C., Cannell, M.B., Estimation of the sarcoplasmic reticulum Ca2+ release flux underlying Ca2+ sparks (2002) Biophysical Journal, 82 (5), pp. 2396-2414
  • Ventura, A.C., Bruno, L., Demuro, A., Parker, I., Dawson, S.P., A model-independent algorithm to derive Ca2+ fluxes underlying local cytosolic Ca2+ transients (2005) Biophysical Journal, 88 (4), pp. 2403-2421. , DOI 10.1529/biophysj.104.045260
  • Izu, L.T., Mauban, J.R.H., Balke, C.W., Wier, W.G., Large Currents Generate Cardiac Ca2+ Sparks (2001) Biophysical Journal, 80, pp. 88-102
  • Rios, E., Stern, M.D., Gonzalez, A., Pizarro, G., Shirokova, N., Calcium release flux underlying Ca2+ sparks of frog skeletal muscle (1999) Journal of General Physiology, 114 (1), pp. 31-48. , DOI 10.1085/jgp.114.1.31
  • Demuro, A., Parker, I., "Optical Patch-clamping": Single-channel Recording by Imaging Ca2+ Flux through Individual Muscle Acetylcholine Receptor Channels (2005) The Journal of General Physiology, 126, pp. 179-192
  • Smith, I., Swaminathan, D., Parker, I., Imaging the Motility of Inositol Trisphosphate Receptors in Intact Mammalian Cells using Single Particle Tracking Photoactivated Localization Microscopy (Sptpalm) (2013) Biophysical Journal, 104, pp. 121a
  • Pantazaka, E., Taylor, C.W., Differential Distribution, Clustering, and Lateral Diffusion of Subtypes of the Inositol 1,4,5-Trisphosphate Receptor (2011) Journal of Biological Chemistry, 286, pp. 23378-23387
  • Wiltgen, S.M., Smith, I.F., Parker, I., Superresolution Localization of Single Functional IP3R Channels Utilizing Ca2+ Flux as a Readout (2010) Biophysical Journal, 99, pp. 437-446
  • Brochet, D.X.P., Yang, D., Di, M.A., Lederer, W.J., Franzini-Armstrong, C., Cheng, H., Ca2+ blinks: Rapid nanoscopic store calcium signaling (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (8), pp. 3099-3104. , DOI 10.1073/pnas.0500059102
  • Bridge, J.H.B., Ershler, P.B., Cannell, M.B., Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes (1999) Journal of Physiology, 518 (2), pp. 469-478. , DOI 10.1111/j.1469-7793.1999.0469p.x
  • Berezin, M.Y., Achilefu, S., Fluorescence Lifetime Measurements and Biological Imaging (2010) Chemical Reviews, 110, pp. 2641-2684
  • Wilms, C.D., Schmidt, H., Eilers, J., Quantitative two-photon Ca2+ imaging via fluorescence lifetime analysis (2006) Cell Calcium, 40, pp. 73-79
  • Helmchen, F., Calibration of Fluorescent Calcium Indicators (2011) Cold Spring Harbor Protocols, 2011. , pdb.top120

Citas:

---------- APA ----------
Piegari, E., Lopez, L., Perez Ipiña, E. & Ponce Dawson, S. (2014) . Fluorescence fluctuations and equivalence classes of Ca2+ imaging experiments. PLoS ONE, 9(4).
http://dx.doi.org/10.1371/journal.pone.0095860
---------- CHICAGO ----------
Piegari, E., Lopez, L., Perez Ipiña, E., Ponce Dawson, S. "Fluorescence fluctuations and equivalence classes of Ca2+ imaging experiments" . PLoS ONE 9, no. 4 (2014).
http://dx.doi.org/10.1371/journal.pone.0095860
---------- MLA ----------
Piegari, E., Lopez, L., Perez Ipiña, E., Ponce Dawson, S. "Fluorescence fluctuations and equivalence classes of Ca2+ imaging experiments" . PLoS ONE, vol. 9, no. 4, 2014.
http://dx.doi.org/10.1371/journal.pone.0095860
---------- VANCOUVER ----------
Piegari, E., Lopez, L., Perez Ipiña, E., Ponce Dawson, S. Fluorescence fluctuations and equivalence classes of Ca2+ imaging experiments. PLoS ONE. 2014;9(4).
http://dx.doi.org/10.1371/journal.pone.0095860