Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Electropermeabilization (EP) based protocols such as those applied in medicine, food processing or environmental management, are well established and widely used. The applied voltage, as well as tissue electric conductivity, are of utmost importance for assessing final electropermeabilized area and thus EP effectiveness. Experimental results from literature report that, under certain EP protocols, consecutive pulses increase tissue electric conductivity and even the permeabilization amount. Here we introduce a theoretical model that takes into account this effect in the application of an EP-based protocol, and its validation with experimental measurements. The theoretical model describes the electric field distribution by a nonlinear Laplace equation with a variable conductivity coefficient depending on the electric field, the temperature and the quantity of pulses, and the Penne's Bioheat equation for temperature variations. In the experiments, a vegetable tissue model (potato slice) is used for measuring electric currents and tissue electropermeabilized area in different EP protocols. Experimental measurements show that, during sequential pulses and keeping constant the applied voltage, the electric current density and the blackened (electropermeabilized) area increase. This behavior can only be attributed to a rise in the electric conductivity due to a higher number of pulses. Accordingly, we present a theoretical modeling of an EP protocol that predicts correctly the increment in the electric current density observed experimentally during the addition of pulses. The model also demonstrates that the electric current increase is due to a rise in the electric conductivity, in turn induced by temperature and pulse number, with no significant changes in the electric field distribution. The EP model introduced, based on a novel formulation of the electric conductivity, leads to a more realistic description of the EP phenomenon, hopefully providing more accurate predictions of treatment outcomes. © 2014 Suárez et al.

Registro:

Documento: Artículo
Título:The role of additional pulses in electropermeabilization protocols
Autor:Suárez, C.; Soba, A.; Maglietti, F.; Olaiz, N.; Marshall, G.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Simulación Computacional - CONICET, Comisión Nacional de Energia Atómica, Buenos Aires, Argentina
Palabras clave:Article; clinical protocol; computer model; controlled study; electric conductivity; electric field; electric potential; electrical parameters; electrical pulse; electroporation; nonhuman; nonlinear system; potato; temperature; theoretical model; computer simulation; cytology; electroporation; procedures; reproducibility; Computer Simulation; Electric Conductivity; Electroporation; Reproducibility of Results; Solanum tuberosum; Temperature
Año:2014
Volumen:9
Número:12
DOI: http://dx.doi.org/10.1371/journal.pone.0113413
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n12_p_Suarez

Referencias:

  • Mir, L., Bases and rationale of the electrochemotherapy (2006) European Journal of Cancer Supp, 4, pp. 38-44
  • Miklavcic, D., Mali, B., Kos, B., Heller, R., Sersa, G., Electrochemotherapy: From the drawing board into medical practice (2014) Biomedical Engineering OnLine, 13, p. 29
  • Yarmush, M.L., Golberg, A., Sersa, G., Kotnik, T., Miklavcic, D., Electroporation-based technologies for medicine: Principles, applications, and challenges (2014) Annual Review of Biomedical Engineering, 16, pp. 295-320
  • Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P., Gene transfer into mouse glioma cells by electroporation in high electric fields (1982) EMBO J, 1, pp. 841-845
  • Escoffre, J.M., Portet, T., Wasungu, L., Teissié, J., Dean, D., What is (still not) known of the mechanism by which electroporation mediates gene transfer and expression in cells and tissues (2009) Molecular Biotechnology, 41, pp. 286-295
  • Mir, L., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): Past, current, and future (2009) Molecular Biotechnology, 43, pp. 167-176
  • Arena, C., Sano, M., Jr., Caldwell, J., Garcia, P., High-frequency irreversible electroporation (h-fire) for non-thermal ablation without muscle contraction (2011) Biomedical Engineering OnLine, 10, pp. 102-122. , JR
  • Sundararajan, R., Nanoelectroporation: A first look (2008) Methods in Molecular Biology, 423, pp. 109-128
  • Knorr, D., Ade-Omowaye, B., Heinz, V., Nutritional improvement of plant foods by not-thermal processing (2002) Proc Nutr Soc, 61, pp. 311-318
  • Rajkovic, A., Smigic, N., Devlieghere, F., Contemporary strategies in combating microbial contamination in food chain (2010) Int J Food Microbiol, 141, pp. S29-S42
  • Poyatos, J., Almecija, M., Garcia-Mesa, J., Muio, M., Hontoria, E., Advanced methods for the elimination of microorganisms in industrial treatments: Potential applicability to wastewater reuse (2011) Water Environment Research, 83, pp. 233-246
  • Kotnik, L., Kramar, P., Pucihar, G., Miklavcic, D., Tarek, M., Cell membrane electroporation - part 1: The phenomenon (2012) IEEE Electrical Insulation Magazine, 28, pp. 14-23
  • Marty, M., Sersa, D., Garbay, J., Gehl, J., Collins, C., Electrochemotherapy, an easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of esope (european standard operating procedures of electrochemotherapy) study (2006) European Journal of Cancer Supp, 4, pp. 3-13
  • Mali, B., Jarm, T., Snoj, M., Sersa, G., Miklavcic, D., Antitumor effectiveness of electrochemotherapy: A systematic review and meta-analysis (2013) European Journal of Surgical Oncology, 39, pp. 4-16
  • Ivorra, A., Al-Sakere, B., Rubinsky, B., Mir, L., In vivo electrical conductivity measurements during and after tumor electroporation: Conductivity changes reflect the treatment outcome (2009) Physics in Medicine and Biology, 54, pp. 5949-5963
  • Ivorra, A., Villemejane, J., Mir, L., Electrical modeling of the influence of medium conductivity on electroporation (2010) Phys Chem Chem Phys, 12, pp. 10055-10064
  • Rols, M., Teissie, J., Ionic-strength modulation of electrically induced permeabilization and associated fusion of mammalian cells (1989) European Journal of Biochemistry, 179, pp. 109-115
  • Gehl, J., Mir, L., Determination of optimal parameters for in vivo gene transfer by electroporation, using a rapid in vivo test for cell permeabilization (1999) Biochemical and Biophysical Research Communications, 261, pp. 377-380
  • Kotnik, T., Lebar, A.M., Kanduser, M., Pucihar, G., Pavlin, M., Electroporation of the cell membrane: Theory and experiments in vitro (2005) Med Razgl, 44, pp. 81-90
  • Pavlin, M., Leben, V., Miklavcic, D., Electroporation in dense cell suspension - theoretical and experimental analysis of ion diffusion and cell permeabilization (2007) Biochemical and Biophysical Acta, 1770, pp. 12-23
  • Garcia, P., Davalos, R., Miklavcic, D., A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue (2014) Plos One, 9, p. e103083
  • Ivorra, A., Mir, L., Rubinsky, B., Electric field redistribution due to conductivity changes during tissue electroporation: Experiments with a simple vegetal model (2009) IFMBE Proceedings, 25, pp. 59-62
  • Galindo, F., Dejmek, P., Lundgren, K., Rasmusson, A., Vicente, A., Metabolomic evaluation of pulsed electric field-induced stress on potatoe tissue (2009) Planta, 230, pp. 469-479
  • Hjouj, M., Rubinsky, B., Magnetic resonance imaging characteristics of nonthermal irreversible electroporation in vegetable tissue (2010) Journal of Membrane Biology, 236, pp. 137-146
  • Ben Ammar, J., Lanoiselle, J., Lebovka, N., Hecke, E.V., Vorobiev, E., Impact of a pulsed electric field on damage of plant tissues: Effects of cell size and tissue electrical conductivity (2011) Journal of Food Science, 76, pp. E90-E97
  • Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suárez, C., The role of ph fronts in reversible electroporation (2011) PlosOne, 6, p. e17303
  • Zupanic, A., Kos, B., Miklavcic, D., Treatment planning of electroporation-based medical interventions: Electrochemotherapy, gene electrotransfer and irreversible electroporation (2012) Physics in Medicine and Biology, 57, pp. 5425-5440
  • Pavliha, D., Kos, B., Marcan, M., Zupanic, A., Sersa, G., Planning of electroporation-based treatments using web-based treatment-planning software (2013) Journal of Membrane Biology, 246, pp. 833-842
  • Sel, D., Cukjati, D., Batiuskaite, D., Slivnik, T., Mir, L.M., Sequential finite element model of tissue electropermeabilization (2005) IEEE Trans Biomed Eng, 52, pp. 816-827
  • Neal, R., Garcia, P., Roberson, J., Davalos, R., Experimental characterization of intrapulse tissue conductivity changes for electroporation (2011) Conf Proc IEEE Eng Med Biol Soc, pp. 5581-5584
  • Essone-Mezeme, M., Pucihar, G., Pavlin, M., Brosseau, C., Miklavcic, D., A numerical analysis of multicellular environment for modeling tissue electroporation (2012) Applied Physics Letters, 100, p. 143701
  • Corovic, S., Lackovic, I., Sustaric, P., Sustar, T., Rodic, T., Modeling of electric field distribution in tissues during electroporation (2013) Biomedical Engineering OnLine, 12, p. 16
  • Garcia, P., R, J., Jr., N, R., II, Ellis, T., Davalos, R., A parametric study delineating irreversible electroporation from thermal damage based on a minimally invasive intracranial procedure (2011) BioMedical Engineering OnLine, 10, p. 34. , II
  • Neal, R., Garcia, P., Robertson, J., Davalos, R., Experimental characterization and numerical modeling of tissue electrical conductivity during pulsed electric fields for irreversible electroporation treatment planning (2012) IEEE Trans Biomed Eng, 59, pp. 1076-1085
  • Mir, L., Gehl, J., Sersa, G., Collins, C., Garbay, J.R., Standard operating procedures of the electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the cliniporator by means of invasive or non-invasive electrodes (2006) European Journal of Cancer Supplements, 4, pp. 14-25
  • Kranjc, M., Bajd, F., Sersa, I., Miklavcic, D., Magnetic resonance electrical impedance tomography for measuring electrical conductivity during electroporation (2014) Physiol Meas, 35, pp. 985-996
  • Lackovic, I., Magjarevic, R., Miklavcic, D., Three-dimensional finite-element analysis of joule heating in electrochemotherapy and in vivo gene electrotransfer (2009) IEEE Transactions on Dielectrics and Electrical Insulation, 16, pp. 1338-1347
  • Kranjc, M., Bajd, F., Sersa, I., Woo, E., Miklavcic, D., Ex vivo and in silico feasibility study of monitoring electric field distribution in tissue during electroporation based treatments (2012) Plos One, 7, p. e45737
  • Pucihar, G., Mir, L., Miklavcic, D., The effect of pulse repetition frequency on the uptake into electropermeabilized cells in vitro with possible applications in electrochemotherapy (2002) Bioelectrochemistry, 57, pp. 167-172
  • Sersa, G., Kranjc, S., Scancar, J., Krzan, M., Cemazar, M., Electrochemotherapy of mouse sarcoma tumors using electric pulse trains with repetition frequencies of 1 hz and 5 khz (2010) J Membr Biol, 236, pp. 155-162
  • Zhu, S., Ramaswamy, H., Marcotte, M., Chen, C., Shao, Y., Evaluation of thermal properties of food materials at high pressures using a dual-needle line-heat-source method (2007) Food Engineering and Physical Properties, 72, pp. E49-E56
  • Criddle, R., Breidenbach, R., Lewis, E., Eatough, D., Hansen, L., Effects of temperature and oxygen depletion on metabolic rates of tomato and carrot cell cultures and cuttings measures by calorimetry (1988) Plant, Cell and Environment, 11, pp. 695-701
  • Wang, N., Brennan, J., Changes in structure, density and porosity of potato during dehydration (1995) Journal of Food Engineering, 24, pp. 61-76
  • Sun, X., Schmidt, S., Litchfield, B., Temperature mapping in a potato using half fourier transfrom mri of diffusion (1994) Journal of Food Process Engineering, 17, pp. 423-437

Citas:

---------- APA ----------
Suárez, C., Soba, A., Maglietti, F., Olaiz, N. & Marshall, G. (2014) . The role of additional pulses in electropermeabilization protocols. PLoS ONE, 9(12).
http://dx.doi.org/10.1371/journal.pone.0113413
---------- CHICAGO ----------
Suárez, C., Soba, A., Maglietti, F., Olaiz, N., Marshall, G. "The role of additional pulses in electropermeabilization protocols" . PLoS ONE 9, no. 12 (2014).
http://dx.doi.org/10.1371/journal.pone.0113413
---------- MLA ----------
Suárez, C., Soba, A., Maglietti, F., Olaiz, N., Marshall, G. "The role of additional pulses in electropermeabilization protocols" . PLoS ONE, vol. 9, no. 12, 2014.
http://dx.doi.org/10.1371/journal.pone.0113413
---------- VANCOUVER ----------
Suárez, C., Soba, A., Maglietti, F., Olaiz, N., Marshall, G. The role of additional pulses in electropermeabilization protocols. PLoS ONE. 2014;9(12).
http://dx.doi.org/10.1371/journal.pone.0113413