Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both Slayers strains that must justify their contribution to pathogenicity. Copyright: © 2014 Varanda et al.

Registro:

Documento: Artículo
Título:Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus
Autor:Allievi, M.C.; Palomino, M.M.; Acosta, M.P.; Lanati, L.; Ruzal, S.M.; Sánchez-Rivas, C.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:bacterial toxin; bacterial toxin BinA; bacterial toxin BinB; chitin; envelope protein; polymer; protein S layer; unclassified drug; membrane protein; protein binding; S-layer proteins; Aedes aegypti; arthropod life cycle stage; Article; bacterial spore; bacterial strain; bacterium culture; computer model; controlled study; crystal structure; Culex; entomopathogenic bacterium; hemolysis; immunofluorescence test; insecticidal activity; larval stage; Lysinibacillus sphaericus; molecular weight; mosquitocidal activity; nonhuman; pathogenicity; polyacrylamide gel electrophoresis; protein carbohydrate interaction; protein determination; protein domain; protein expression; protein function; protein localization; protein processing; sporogenesis; toxicity testing; toxin analysis; Western blotting; Aedes; amino acid sequence; animal; Bacillaceae; chemistry; Culex; drug effects; metabolism; molecular genetics; protein multimerization; Aedes; Amino Acid Sequence; Animals; Bacillaceae; Chitin; Culex; Membrane Glycoproteins; Molecular Sequence Data; Protein Binding; Protein Multimerization; Spores, Bacterial
Año:2014
Volumen:9
Número:10
DOI: http://dx.doi.org/10.1371/journal.pone.0111114
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
CAS:chitin, 1398-61-4; Chitin; Membrane Glycoproteins; S-layer proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v9_n10_p_Allievi

Referencias:

  • Lacey, L.A., Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control (2007) J Am Mosq Control Assoc., 23 (2), pp. 133-163
  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A., Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects (1996) Proc Natl Acad Sci U S A., 93 (11), pp. 5389-5394
  • Van Frankenhuyzen, K.J., Cross-order and cross-phylum activity of Bacillus thuringiensis pesticidal proteins (2013) Invertebr Pathol., 114 (1), pp. 76-85
  • Berry, C., The bacterium, Lysinibacillus sphaericus, as an insect pathogen (2012) J Invertebr Pathol, 109, pp. 1-10
  • Ahmed, I., Yokota, A., Yamazoe, A., Fujiwara, T., Proposal of Lysinibacillus boronitolerans gen. Nov. Sp. Nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. Nov. And Bacillus sphaericus to Lysinibacillus sphaericus comb. Nov (2007) Int. J. Syst. Evol. Microbiol., 57, pp. 1117-1125
  • Krych, V.K., Johnson, J.L., Yousten, A.A., Deoxyribonucleic acid homologies among strains of Bacillus sphaericus (1980) Int J Syst Bacteriol, 30, pp. 476-484
  • Rippere, K.E., Johnson, J.L., Yousten, A.A., DNA similarities among mosquitopathogenic and nonpathogenic strains of Bacillus sphaericus (1997) Int J Syst Bacteriol, 47, pp. 214-216
  • Russell, B.L., Jelley, S.A., Yousten, A.A., Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362 (1989) Appl Environ Microbiol., 55 (2), pp. 294-297
  • Alice, A.F., Pérez-Martínez, G., Sánchez-Rivas, C., Existence of a true phosphofructokinase in Bacillus sphaericus: Cloning and sequencing of the pfk gene (2002) Appl Environ Microbiol., 68, pp. 6410-6415
  • Alice, A.F., Pérez-Martínez, G., Sánchez-Rivas, C., Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus (2003) Microbiol., 149, pp. 1687-1698
  • Gomez-Ramírez, M., Rojas-Avelizapa, L.I., Cruz-Camarillo, R., The chitinase of Bacillus thuringiensis (2001) Chitin Enzymology. Atec Edizioni, pp. 273-282. , R. A. A. Muzzarelli ed., Atec, Italy
  • Yousten, A.A., Davidson, E.W., Ultrastructural Analysis of Spores and Parasporal Crystals Formed by Bacillus sphaericus 2297 (1982) Environ Microbiol., 44 (6), pp. 1449-1455
  • Smith, A.W., Cámara-Artigas, A., Brune, D.C., Allen, J.P., Implications of highmolecular- weight oligomers of the binary toxin from Bacillus sphaericus (2005) J Invertebr Pathol., 88, pp. 27-33
  • Thanabalu, T., Hindley, J., Jackson-Yap, J., Berry, C., Cloning, sequencing and expression of a gene encoding a 100-kilodalton mosquitocidal toxin from Bacillus sphaericus SSII-1 (1991) J. Bacteriol., 173, pp. 2776-2785
  • Charles, J.F., Nielson-Leroux, C., Delécluse, A., Bacillus sphaericus toxins: Molecular biology and mode of action (1996) Annu Rev Entomol, 41, pp. 451-472
  • Yang, Y., Wang, L., Gaviria, A., Yuan, Z., Berry, C., Proteolytic stability of insecticidal toxins expressed in recombinant bacilli (2007) Appl Environ Microbiol, 73, pp. 218-225
  • Thiéry, I., Hamon, S., Delécluse, A., Orduz, S., The introduction into Bacillus sphaericus of the Bacillus thuringiensis subsp. Medellin Cyt1Ab1 gene results in higher susceptibility of resistant mosquito larva populations to B. Sphaericus (1998) Appl Environ Microbiol., 64, pp. 3910-3916
  • Wirth, M.C., Yang, Y., Walton, W.E., Federici, B.A., Berry, C., Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticideresistant Culex quinquefasciatus larvae (2007) Appl Environ Microbiol., 73, pp. 6066-6071
  • Chenniappan, K., Ayyadurai, N., Synergistic activity of Cyt1A from Bacillus thuringiensis subsp. Israelensis with Bacillus sphaericus B101 H5a5b against Bacillus sphaericus B101 H5a5b-resistant strains of Anopheles stephensi Liston (Diptera: Culicidae) (2012) Parasitol Res, 110, pp. 381-388
  • Merroun, M.L., Raff, J., Rossberg, A., Hennig, C., Reich, T., Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12 (2005) Appl. Environ. Microbiol., 71, pp. 5532-5543
  • Pollmann, K., Raff, J., Merroun, M., Fahmy, K., Selenska-Pobell, S., Metal binding by bacteria from uranium mining waste piles and its technological applications (2006) Biotechnology Advances, 24, pp. 58-68
  • Allievi, M.C., Sabbione, F., Prado-Acosta, M., Palomino, M.M., Ruzal, S.M., Metal biosorption by surface-layer proteins from bacillus species (2011) Microbiol. Biotechnol., 21, pp. 147-153
  • Kern, J., Schneewind, O., BslA, the S-layer adhesin of B. Anthracis, is a virulence factor for anthrax pathogenesis (2010) Mol Microbiol., 75, pp. 324-332
  • Wang, Y.T., Oh, S.Y., Hendrickx, A.P., Lunderberg, J.M., Schneewind, O., Bacillus cereus G9241 S-layer assembly contributes to the pathogenesis of anthrax-like disease in mice (2013) J. Bacteriol., 195, pp. 596-605
  • Janesch, B., Messner, P., Schäffer, C., Are the SLH-Domains Essential for Cell Surface display and glycosylation of the S-Layer protein from Paenibacillus alvei CCM 2051T? (2013) J Bacteriol., 195, pp. 596-605
  • Peña, G., Miranda-Rios, J., De La Riva, G., Pardo-López, L., Soberón, M., A Bacillus thuringiensis S-layer protein involved in toxicity against Epilachna varivestis (Coleoptera: Coccinellidae) (2006) Appl Environ Microbiol, 72, pp. 353-360
  • Guo, G., Zhang, L., Zhou, Z., Ma, Q., Liu, J., A new group of parasporal inclusions encoded by the S-layer gene of Bacillus thuringiensis (2008) FEMS Microbiol Lett, 282, pp. 1-7
  • Zhou, Z., Peng, D., Zheng, J., Guo, G., Tian, L., Two groups of S-layer proteins, SLP1s and SLP2s, in Bacillus thuringiensis co-exist in the S-layer and in parasporal inclusions (2011) BMB Rep., 44, pp. 323-328
  • Lozano, L.C., Ayala, J.A., Dussán, J., Lysinibacillus sphaericus S-layer protein toxicity against Culex quinquefasciatus (2011) Biotechnol Lett, 33, pp. 2037-2041
  • Lewis, L.O., Yousten, A.A., Rge, M., Characterization of the surface protein layers of the mosquito-pathogenic strains of Bacillus sphaericus J (1987) Bacteriol, 169, pp. 72-79
  • López-Diaz, J.A., Cantón, P.E., Gill, S.S., Soberón, M., Bravo, A., Oligomerization is a key step in Cyt1Aa membrane insertion and toxicity but not necessary to synergize Cry11Aa toxicity in Aedes aegypti larvae (2013) Environ Microbiol., 15, pp. 3030-3039
  • Myers, P.S., Yousten, A.A., Localization of a mosquito-larval toxin of Bacillus sphaericus 1593 (1980) Appl. Environ. Microbiol., 39, pp. 1205-1211
  • Yousten, A.A., Bacillus sphaericus: Microbiological factors related to its potential as a mosquito larvicide (1984) Adv Biotechnol Processes., 1984 (3), pp. 315-343
  • Travers, R.S., Martin, P.A., Reichelderfer, C.F., Selective process for efficient isolation of soil Bacillus spp (1987) Appl Environ Microbiol., 53 (6), pp. 1263-1266
  • Redmond, C., Baillie, L.W., Hibbs, S., Moir, A.J., Moir, A., Identification of proteins in the exosporium of Bacillus anthracis (2004) Microbiology., 150, pp. 355-363
  • Kailas, L., Terry, C., Abbott, N., Taylor, R., Mullin, N., Surface architecture of endospores of the Bacillus cereus/anthracis/thuringiensis family at the subnanometer scale (2011) Proc Natl Acad Sci U S A, 108 (38), pp. 16014-16019
  • Fischer, S., Schweigmann, N., Culex mosquitoes in temporary urban rain pools: Seasonal dynamics and relation to environmental variables (2004) J Vector Ecol., 29 (2), pp. 365-373
  • Thiery, I., Delécluse, A., Tamayo, M.C., Orduz, S., Identification of a gene for Cyt1A-like hemolysin from Bacillus thuringiensis subsp. Medellin and expression in a crystal-negative B. Thuringiensis strain (1997) Appl Environ Microbiol., 63 (2), pp. 468-473
  • Rodriguez-Almazan, C., Ruiz De Escudero, I., Cantón, P.E., Muñoz-Garay, C., Pérez, C., The amino- and carboxyl-terminal fragments of the Bacillus thuringensis Cyt1Aa toxin have differential roles in toxin oligomerization and pore formation (2011) Biochem, 50, pp. 388-396
  • Balzarini, M.G., Gonzalez, L., Tablada, M., Casanoves, F., Di Rienzo, J.A., (2008) Infostat, , Manual del Usuario, Editorial Brujas, Córdoba, Argentina
  • Itoh, T., Hibi, T., Fujii, Y., Sugimoto, I., Fujiwara, A., Cooperative degradation of chitin by extracellular and cell surface-expressed chitinases from Paenibacillus sp. Strain FPU-7 (2013) Appl Environ Microbiol., 79, pp. 7482-7490
  • Rodenburg, C.M., McPherson, S.A., Turnbough, C.L., Jr., Dokland, T., Cryo-EM analysis of the organization of BclA and BxpB in the Bacillus anthracis exosporium (2014) J Struct Biol., 186 (1), pp. 181-187
  • Hu, X., Fan, W., Han, B., Liu, H., Zheng, D., Complete genome sequence of the mosquitocidal bacterium Bacillus sphaericus C3-41 and comparison with those of closely related Bacillus species (2008) J. Bacteriol, 190, pp. 2892-2902
  • Sampson, M.N., Gooday, G.W., Involvement of chitinases of Bacillus thuringiensis during pathogenesis in insects (1998) Microbiology, 144, pp. 2189-2194
  • Frederiksen, R.F., Paspaliari, D.K., Larsen, T., Storgaard, B.G., Larsen, M.H., Bacterial chitinases and chitin-binding proteins as virulence factors (2013) Microbiol., 159, pp. 833-847
  • Cai, Y., Ya, J., Hu, X., Han, B., Yuan, Z., Improving the insecticidal activity against resistant Culex quinquefasciatus mosquitoes by expression of chitinase gene chiAC in Bacillus sphaericus (2007) Appl Environ Microbiol., 73, pp. 7744-7746
  • Wirth, M.C., Delécluse, A., Walton, W.E., Cyt1Ab1 and cyt2Ba1 from bacillus thuringiensis subsp. Medellin and B. Thuringiensis subsp. Israelensis synergize Bacillus sphaericus against Aedes aegypti and resistant Culex quinquefasciatus (Diptera: Culicidae) (2001) Appl Environ Microbiol., 67, pp. 3280-3284
  • Allievi, M.C., (2012) S-layer de Bacillus Sphaericus: Caracterización, Regulación, Análisis Funcional y Aplicaciones, , http://bldigital.bl.fcen.uba.ar/Download/Tesis/Tesis_5143_Allievi.pdf, Thesis. University of Buenos Aires Accessed 28 June 2012
  • Hu, X., Li, J., Hansen, B.M., Yuan, Z., Phylogenetic analysis and heterologous expression of surface layer protein SlpC of Bacillus sphaericus C3-41 (2008) Biosci Biotechnol Biochem, 72, pp. 1257-1263
  • Forsberg, L.S., Choudhury, B., Leoff, C., Marston, C.K., Hoffmaster, A.R., Secondary cell wall polysaccharides from Bacillus cereus strains G9241, 03BB87 and 03BB102 causing fatal pneumonia share similar glycosyl structures with the polysaccharides from Bacillus anthracis (2011) Glycobiol, 21, pp. 934-948
  • Balomenou, S., Fouet, A., Tzanodaskalaki, M., Couture-Tosi, E., Bouriotis, V., Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence of Bacillus anthracis (2013) Mol Microbiol., 87, pp. 867-883
  • Friedlander, A., Quinn, C.P., Kannenberg, E.L., Carlson, R.W., Localization and structural analysis of a conserved pyruvylated epitope in Bacillus anthracis secondary cell wall polysaccharides and characterization of the galactosedeficient wall polysaccharide from avirulent B. Anthracis CDC 684 (2012) Glycobiol, 22, pp. 1103-1117

Citas:

---------- APA ----------
Allievi, M.C., Palomino, M.M., Acosta, M.P., Lanati, L., Ruzal, S.M. & Sánchez-Rivas, C. (2014) . Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus. PLoS ONE, 9(10).
http://dx.doi.org/10.1371/journal.pone.0111114
---------- CHICAGO ----------
Allievi, M.C., Palomino, M.M., Acosta, M.P., Lanati, L., Ruzal, S.M., Sánchez-Rivas, C. "Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus" . PLoS ONE 9, no. 10 (2014).
http://dx.doi.org/10.1371/journal.pone.0111114
---------- MLA ----------
Allievi, M.C., Palomino, M.M., Acosta, M.P., Lanati, L., Ruzal, S.M., Sánchez-Rivas, C. "Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus" . PLoS ONE, vol. 9, no. 10, 2014.
http://dx.doi.org/10.1371/journal.pone.0111114
---------- VANCOUVER ----------
Allievi, M.C., Palomino, M.M., Acosta, M.P., Lanati, L., Ruzal, S.M., Sánchez-Rivas, C. Contribution of S-layer proteins to the mosquitocidal activity of Lysinibacillus sphaericus. PLoS ONE. 2014;9(10).
http://dx.doi.org/10.1371/journal.pone.0111114