Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the genetic architecture of any quantitative trait requires identifying the genes involved in its expression in different environmental conditions. This goal can be achieved by mutagenesis screens in genetically tractable model organisms such as Drosophila melanogaster. Temperature during ontogenesis is an important environmental factor affecting development and phenotypic variation in holometabolous insects. In spite of the importance of phenotypic plasticity and genotype by environment interaction (GEI) for fitness related traits, its genetic basis has remained elusive. In this context, we analyzed five different adult morphological traits (face width, head width, thorax length, wing size and wing shape) in 42 co-isogenic single P-element insertional lines of Drosophila melanogaster raised at 17°C and 25°C. Our analyses showed that all lines differed from the control for at least one trait in males or females at either temperature. However, no line showed those differences for all traits in both sexes and temperatures simultaneously. In this sense, the most pleiotropic candidate genes were CG34460, Lsd-2 and Spn. Our analyses also revealed extensive genetic variation for all the characters mostly indicated by strong GEIs. Further, our results indicate that GEIs were predominantly explained by changes in ranking order in all cases suggesting that a moderate number of genes are involved in the expression of each character at both temperatures. Most lines displayed a plastic response for at least one trait in either sex. In this regard, P-element insertions affecting plasticity of a large number of traits were associated to the candidate genes Btk29A, CG43340, Drak and jim. Further studies will help to elucidate the relevance of these genes on the morphogenesis of different body structures in natural populations of D. melanogaster. © 2013 Carreira et al.

Registro:

Documento: Artículo
Título:Gene-by-Temperature Interactions and Candidate Plasticity Genes for Morphological Traits in Drosophila melanogaster
Autor:Carreira, V.P.; Imberti, M.A.; Mensch, J.; Fanara, J.J.
Filiación:Dept. de Eco., Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Inst. de Eco., Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Palabras clave:article; Btk29A gene; CG34430 gene; CG34460 gene; controlled study; Drak gene; Drosophila melanogaster; female; gene; gene function; gene insertion; genetic analysis; genetic association; genetic variability; genotype; genotype environment interaction; insect genetics; jim gene; Lsd 2 gene; male; morphogenesis; morphological trait; nonhuman; ontogeny; phenotypic plasticity; Spn gene; temperature; Analysis of Variance; Animals; Body Size; Drosophila melanogaster; Female; Gene-Environment Interaction; Genotype; Male; Morphogenesis; Mutagenesis; Mutation; Phenotype; Quantitative Trait, Heritable; Sex Factors; Temperature; Wing
Año:2013
Volumen:8
Número:7
DOI: http://dx.doi.org/10.1371/journal.pone.0070851
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v8_n7_p_Carreira.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n7_p_Carreira

Referencias:

  • Schlichting, C.D., Smith, H., Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes (2002) Evol Ecol, 16, pp. 189-211
  • Mackay, T.F.C., The genetic architecture of quantitative traits: lessons from Drosophila (2004) Curr Opin Genet & Dev, 14, pp. 253-257
  • Auld, J.R., Agrawal, A.A., Relyea, R.A., Re-evaluating the costs and limits of adaptive phenotypic plasticity (2009) Proc R Soc B, 277, pp. 503-511
  • Lukacsovich, T., Asztalos, Z., Awano, W., Baba, K., Kondo, S., Dual-tagging gene trap of novel genes in Drosophila melanogaster (2001) Genetics, 157, pp. 727-742
  • Bellen, H.J., O'Kane, C.J., Wilson, C., Grossniklaus, U., Pearson, R.K., The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes (2004) Genetics, 167, pp. 761-781
  • Anholt, R.R.H., Lyman, R.L., Mackay, T.F.C., Effects of single P-element insertions on olfactory behavior in Drosophila melanogaster (1996) Genetics, 143, pp. 293-301
  • Lyman, R.F., Lawrence, F., Nuzhdin, S.V., Mackay, T.F.C., Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster (1996) Genetics, 143, pp. 277-292
  • Norga, K.K., Gurganus, M.C., Dilda, C.L., Yamamoto, A., Lyman, R.F., Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr. Biol (2003), 13, pp. 1388-1397; Harbison, S.T., Yamamoto, A.H., Fanara, J.J., Norga, K.K., Mackay, T.F.C., Quantitative trait loci affecting starvation resistance in Drosophila melanogaster (2004) Genetics, 166, pp. 1807-1823
  • Sambandan, D., Yamamoto, A., Fanara, J.J., Mackay, T.F.C., Anholt, R.R., Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster (2006) Genetics, 174, pp. 1349-1363
  • Mensch, J., Lavagnino, N., Carreira, V.P., Massaldi, A., Hasson, E., Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC Dev. Biol (2008), 8, p. 78; Carreira, V.P., Mensch, J., Fanara, J.J., Body size in Drosophila: genetic architecture, allometries and sexual dimorphism (2009) Heredity, 102, pp. 246-256
  • Carreira, V.P., Soto, I.M., Mensch, J., Fanara, J.J., Genetic basis of wing morphogenesis in Drosophila: sexual dimorphism and non-allometric effects of shape variation (2011) BMC Dev Biol, 11, p. 32
  • Atkinson, D., Sibly, R.M., Why are organisms usually bigger in colder environments? Making sense of a life history puzzle (1997) Trends Ecol Evol, 12, pp. 235-239
  • Atkinson, D., Temperature and organism size: a biological law for ectotherms (1994) Adv Ecol Res, 25, pp. 1-58
  • Scheiner, S.M., Caplan, R.L., Lyman, R.F., The genetics of phenotypic plasticity. III. Genetic correlations and fluctuating aymmetries (1991) J Evol Biol, 4, pp. 51-68
  • Gebhardt, M.D., Stearns, S.C., Phenotypic plasticity for life history traits in Drosophila melanogaster. I. Effect on phenotypic and environmental correlations (1993) J Evol Biol, 6, pp. 1-16
  • Barker, J.S.F., Krebs, R.A., Genetic variation and plasticity of thorax length and wing length in Drosophila aldrichi and D. buzzatii (1995) J Evol Biol, 8, pp. 689-709
  • Noach, E.J.K., de Jong, G., Scharloo, W., Phenotypic plasticity in morphological traits in two populations of Drosophila melanogaster (1996) J Evol Biol, 9, pp. 831-844
  • Morin, J.P., Moreteau, B., Pétavy, G., Parkash, R., David, J.R., Reaction norms of morphological traits in Drosophila: adaptive shape changes in a stenotherm circumtropical species (1997) Evolution, 51, pp. 1140-1148
  • Nunney, L., Cheung, W., The effect of temperature on body size and fecundity in female Drosophila melanogaster: evidence for adaptative plasticity (1997) Evolution, 51, pp. 1529-1535
  • Loeschcke, V., Bungaard, J., Barker, J.S.F., Reaction norms across and genetic parameters at different temperatures for thorax and wing size traits in Drosophila aldrichi and D. buzzatii (1999) J Evol Biol, 12, pp. 605-623
  • Wolf, L.L., Starmer, W.T., Polak, M., Barker, J.S.F., Genetic architecture of a wing size measure in Drosophila hibisci from two populations in eastern Australia (2000) Heredity, 85, pp. 521-529
  • Gilchrist, G.W., Huey, R.B., Plastic and genetic variation in wing loading as a function of temperature within and among parallel clines in Drosophila subobscura (2004) Integr Comp Biol, 44, pp. 461-470
  • David, J.R., Legout, H., Moreteau, B., Phenotypic plasticity of body size in a temperate population of Drosophila melanogaster: when the temperature-size rule does not apply (2006) J Genet, 85, pp. 9-23
  • Azevedo, B.R., James, A.C., McCabe, J., Partridge, L., Latitudinal variation of wing:thorax size ratio and wing-aspect ratio in Drosophila melanogaster (1998) Evolution, 52, pp. 1353-1362
  • Moreteau, B., Imasheva, A.G., Morin, J.P., David, J.R., Wing shape and developmental temperature in two Drosophila sibling species: different wing regions exhibit different norms of reaction (1998) Russ J Genet, 34, pp. 183-192
  • Bitner-Mathé, B.C., Klaczko, L.B., Plasticity of Drosophila melanogaster wing morphology: effects of sex, temperature and density (1999) Genetica, 105, pp. 203-210
  • Birdsall, K., Zimmerman, E., Teeter, K., Gibson, G., Genetic variation for the positioning of wing veins in Drosophila melanogaster (2000) Evol Dev, 2 (1), pp. 16-24
  • Imasheva, A.G., Moreteau, B., David, J.R., Growth temperature and genetic variability of wing dimensions in Drosophila: opposite trends in two sibling species (2000) Genet Res (Camb), 76, pp. 237-247
  • Debat, V., Bégin, M., Legout, H., David, J.R., Allometric and non allometric components of Drosophila wing shape respond differently to developmental temperature (2003) Evolution, 57, pp. 2773-2784
  • Matta, B.P., Bitner-Mathé, B.C., Genetic architecture of wing morphology in Drosophila simulans and an analysis of temperature effects on genetic parameter estimates (2004) Heredity, 93, pp. 330-341
  • Kjærsgaard, A., Faurby, S., Andersen, D.H., Pertoldi, C., David, J.R., Effects of temperature and maternal and grandmaternal age on wing shape in parthenogenetic Drosophila mercatorum (2007) J Therm Biol, 32, pp. 59-65
  • Debat, V., Debelle, A., Dworkin, I., Plasticity, canalization, and developmental stability of the Drosophila wing: joint effects of mutations and developmental temperature (2009) Evolution, 63 (11), pp. 2864-2876
  • Via, S., Lande, R., Genotype-environment interaction and the evolution of phenotypic plasticity (1985) Evolution, 39, pp. 505-522
  • Falconer, D.S., Selection in different environments: effects on environmental sensitivity (reaction norm) and on mean performance (1990) Genet Res, 56, pp. 57-70
  • Lynch, M., Walsh, B., (1998) Genetics and Analysis of Quantitative Traits, p. 980. , Sunderland: Sinauer Associates
  • Ungerer, M.C., Halldorsdottir, S.S., Purugganan, M.D., Mackay, T.F.C., Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana (2003) Genetics, 165, pp. 353-365
  • Carreira, V.P., Soto, I.M., Hasson, E., Fanara, J.J., Patterns of variation in wing morphology in the cactophilic Drosophila buzzatii and its sibling D. koepferae (2006) J Evol Biol, 19, pp. 1275-1282
  • Fanara, J.J., Folguera, G., Fernández Iriarte, P., Mensch, J., Hasson, E., Genotype by environment interactions in viability and developmental time in populations of cactophilic Drosophila (2006) J Evol Biol, 19, pp. 900-903
  • Mackay, T.F.C., Richards, S., Stone, E.A., Barbadilla, A., Ayroles, J.F., The Drosophila melanogaster Genetic Reference Panel (2012) Nature, 482, pp. 173-178
  • Rohlf, F.J., (2001) TpsDig©. Version 1.31, , http://life.bio.sunysb.edu/morph/, Free software available on the SB Morphometrics website:. Accessed 2013 July 3. Department of Ecology and Evolution, State University of New York, Stony Brook, New York
  • Rohlf, F.J., Slice, D., Extensions of the procrustes method for the superimposition of landmarks (1990) Syst Zool, 39, pp. 40-59
  • Bookstein, F.L., (1991) Morphometric tools for landmark data: Geometry and biology, p. 455. , Cambridge: Cambridge University Press
  • Rohlf, F.J., (2003) TpsRelw©. Version 1.31, , http://life.bio.sunysb.edu/morph/, Free software available on the SB Morphometrics website:. Accessed 2013 July 3. Department of Ecology and Evolution, State University of New York, Stony Brook, New York
  • Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M., (2011) InfoStat version 2011, , http://www.infostat.com.ar, Software available on the Infostat website. Accessed 2013 July 3. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina
  • Rohlf, F.J., (2004) TpsSplin©. Version 1.18. Free software available on the SB Morphometrics website, , http://life.bio.sunysb.edu/morph/, Accessed 2013 July 3. Department of Ecology and Evolution, State University of New York, Stony Brook, New York
  • Robertson, A., Experimental design in the evaluation of genetic parameters (1959) Biometrics, 15 (2), pp. 219-226
  • (2004) STATISTICA, , http://www.statsoft.com, StatSoft Inc Version 7. Software available on the StatSoft website:. Accessed 2013 July 3
  • Shingleton, A.W., Estep, C.M., Driscoll, M.V., Dworkin, I., Many ways to be small: different environmental regulators of size generate distinct scaling relationships in Drosophila melanogaster (2009) Proc R Soc B, 276, pp. 2625-2633
  • Weber, K., Johnson, N., Champlin, D., Patty, A., Many P-element insertions affect wing shape in Drosophila melanogaster (2005) Genetics, 169, pp. 1461-1475
  • Dworkin, I., Gibson, G., Epidermal growth factor receptor and transforming growth factor-beta signaling contributes to variation for wing shape in Drosophila melanogaster (2006) Genetics, 173, pp. 1417-1431
  • Cowley, D.E., Atchley, W.R., Development and quantitative genetics of correlation structure among body parts of Drosophila melanogaster (1990) Am Nat, 135, pp. 242-268
  • Cavicchi, S., Pezzoli, C., Giorgi, G., Correlation between characters as related to developmental pattern in Drosophila (1981) Genetica, 56, pp. 189-195
  • Weber, K.E., Selection on wing allometry in Drosophila melanogaster (1990) Genetics, 126, pp. 975-989
  • Weber, K.E., How small are the smallest selectable domains of forms (1992) Genetics, 130, pp. 345-353
  • Imasheva, A.G., Bubli, O.A., Lazebny, O.E., Zhivotovsky, L.A., Geographic differentiation in wing shape in Drosophila melanogaster (1995) Genetica, 96, pp. 303-306
  • Guerra, D., Pezzoli, M.C., Georgi, G., Garoia, F., Cavicchi, S., Developmental constraints in the Drosophila wing (1997) Heredity, 79, pp. 564-571
  • Klingenberg, C.P., Zaklan, S.D., Morphological integration between developmental compartments in the Drosophila wing (2000) Evolution, 54 (4), pp. 1273-1285
  • Breuker, C.J., Patterson, J.S., Klingenberg, C.P., A single basis for developmental buffering of Drosophila wing shape (2006) PLoS One, 1, pp. e7
  • Dreyer, A.P., Shingleton, A.W., The effect of genetic and environmental variation on genital size in male Drosophila: canalized but developmentally unstable (2011) PLoS One 6, 12, pp. e28278
  • Gilchrist, A.S., Azevedo, R.B.R., Partridge, L., O'Higgins, P.P., Adaptation and constraint in the evolution of Drosophila melanogaster wing shape (2000) Evol Dev, 2, pp. 114-124
  • Huey, R.B., Gilchrist, G.W., Carlson, M.L., Berrigan, D., Serra, L., Rapid evolution of a geographic cline in size in an introduced fly (2000) Science, 287, pp. 308-309
  • Mensch, J., Carreira, V., Lavagnino, N., Goenaga, J., Folguera, G., Stage-specific effects of candidate heterochronic genes on variation in developmental time along an altitudinal cline of Drosophila melanogaster (2010) PLoS One 5, 6, pp. e11229
  • Thomas, R.H., Barker, J.S.F., Quantitative genetic analysis of the body size and shape of Drosophila buzzatii (1993) Theor Appl Genet, 85, pp. 598-608
  • Stalker, H.D., Carson, H.L., An altitudinal transect of Drosophila robusta Sturtevant (1948) Evolution, 2, pp. 295-305
  • Misra, R.R., Reeve, E.C.R., Clines in body dimensions in populations of Drosophila subobscura (1964) Genet Res, 5, pp. 240-256
  • Sokoloff, A., Morphological variation in natural and experimental populations of Drosophila pseudoobscura and Drosophila persimilis (1966) Evolution, 20, pp. 47-71
  • Bitner-Mathe, B.C., Peixoto, A.A., Klaczko, L.B., Morphological variation in a natural population of Drosophila mediopunctata: altitudinal cline, temporal changes and influence of chromosome inversions (1995) Heredity, 75, pp. 54-61
  • Parkash, R., Karan, D., Kataria, S.K., Munjal, A.K., Phenotypic variability of quantitative traits in Indian populations of Drosophila kikkawai (1999) J Zool Syst Evol Res, 37, pp. 13-17
  • Hallas, R., Schiffer, M., Hoffmann, A.A., Clinal variation in Drosophila serrata for stress resistance and body size (2002) Genet Res 79, 2, pp. 141-148
  • de Jong, G., Bochdanovits, Z., Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway (2003) J Genet, 82, pp. 207-223
  • Hoffmann, A.A., Weeks, A.R., Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia (2007) Genetica, 129, pp. 133-147
  • Arthur, A.L., Weeks, A.R., Sgrò, C.M., Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia (2008) J Evol Biol, 21, pp. 1470-1479
  • Folguera, G., Ceballos, S., Spezzi, L., Fanara, J.J., Hasson, E., Clinal variation in developmental time and viability and the response to thermal treatments in two species of Drosophila (2008) Biol. J. Linn Soc, 95, pp. 233-245
  • West-Eberhard, M.J., (2003) Developmental plasticity and evolution, p. 916. , Oxford: Oxford Univ. Press
  • Shingleton, A.W., The regulation and evolution of growth and body size (2011) Mechanisms of Life History Evolution, pp. 43-55. , In: Flatt T, Heyland A, editors. Oxford: Oxford Univ. Press
  • Zhou, S., Campbell, T.G., Stone, E.A., Mackay, T.F.C., Anholt, R.R.H., Phenotypic plasticity of the Drosophila transcriptome (2012) PLoS Genet 8, 3, pp. e1002593
  • Schmidt-Nielsen, K., (1984) Scaling: Why is animal size so important?, p. 256. , Cambridge: Cambridge University Press
  • Roff, D.A., (1992) The Evolution of life histories, p. 548. , New York: Chapman and Hall
  • Stearns, S.C., (1992) The evolution of Life Histories, p. 264. , Oxford: Oxford Univ. Press
  • Partridge, L., Fowler, K., Responses and correlated responses to artificial selection on thorax length in Drosophila melanogaster (1993) Evolution, 47, pp. 213-226
  • Betrán, E., Santos, M., Ruiz, A., Antagonistic pleiotropic effect of second-chromosome inversions on body size and early life-history traits in Drosophila buzzatii (1998) Evolution, 52, pp. 144-154
  • Fernández Iriarte, P.E., Hasson, E., The role of antagonistic pleiotropy and different cactus host in the maintenance of the inversion polymorphism in Drosophila buzzatii (2000) Evolution, 54, pp. 743-748
  • Serra, F., Arbiza, L., Dopazo, J., Dopazo, H., Natural selection on functional modules, a genome-wide analysis (2011) PLoS Comput Biol, 7 (3), pp. e1001093

Citas:

---------- APA ----------
Carreira, V.P., Imberti, M.A., Mensch, J. & Fanara, J.J. (2013) . Gene-by-Temperature Interactions and Candidate Plasticity Genes for Morphological Traits in Drosophila melanogaster. PLoS ONE, 8(7).
http://dx.doi.org/10.1371/journal.pone.0070851
---------- CHICAGO ----------
Carreira, V.P., Imberti, M.A., Mensch, J., Fanara, J.J. "Gene-by-Temperature Interactions and Candidate Plasticity Genes for Morphological Traits in Drosophila melanogaster" . PLoS ONE 8, no. 7 (2013).
http://dx.doi.org/10.1371/journal.pone.0070851
---------- MLA ----------
Carreira, V.P., Imberti, M.A., Mensch, J., Fanara, J.J. "Gene-by-Temperature Interactions and Candidate Plasticity Genes for Morphological Traits in Drosophila melanogaster" . PLoS ONE, vol. 8, no. 7, 2013.
http://dx.doi.org/10.1371/journal.pone.0070851
---------- VANCOUVER ----------
Carreira, V.P., Imberti, M.A., Mensch, J., Fanara, J.J. Gene-by-Temperature Interactions and Candidate Plasticity Genes for Morphological Traits in Drosophila melanogaster. PLoS ONE. 2013;8(7).
http://dx.doi.org/10.1371/journal.pone.0070851