Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

It is universally true in ecological communities, terrestrial or aquatic, temperate or tropical, that some species are very abundant, others are moderately common, and the majority are rare. Likewise, eukaryotic genomes also contain classes or "species" of genetic elements that vary greatly in abundance: DNA transposons, retrotransposons, satellite sequences, simple repeats and their less abundant functional sequences such as RNA or genes. Are the patterns of relative species abundance and diversity similar among ecological communities and genomes? Previous dynamical models of genomic diversity have focused on the selective forces shaping the abundance and diversity of transposable elements (TEs). However, ideally, models of genome dynamics should consider not only TEs, but also the diversity of all genetic classes or "species" populating eukaryotic genomes. Here, in an analysis of the diversity and abundance of genetic elements in >500 eukaryotic chromosomes, we show that the patterns are consistent with a neutral hypothesis of genome assembly in virtually all chromosomes tested. The distributions of relative abundance of genetic elements are quite precisely predicted by the dynamics of an ecological model for which the principle of functional equivalence is the main assumption. We hypothesize that at large temporal scales an overarching neutral or nearly neutral process governs the evolution of abundance and diversity of genetic elements in eukaryotic genomes. © 2013 Serra et al.

Registro:

Documento: Artículo
Título:Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes
Autor:Serra, F.; Becher, V.; Dopazo, H.
Filiación:Evolutionary Genomics Laboratory, Bioinformatics and Genomics Department, Centro de Investigación Príncipe Felipe, Valencia, Spain
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Instituto de Genómica Humana-Banco Nacional de Datos Genéticos, Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
Structural Genomics Team, Genome Biology Group, Centre Nacional d'Análisis Genómic (CNAG), Barcelona, Spain
Palabras clave:article; chromosome size; chromosome structure; community dynamics; eukaryote; genetic element; genetic variability; genome; metagenomics; neutral gene theory; nonhuman; population abundance; relative species abundance; species diversity; transposon; Algorithms; Animals; Chromosomes; Genetic Variation; Genome; Humans; Likelihood Functions; Models, Genetic; Stochastic Processes; Eukaryota
Año:2013
Volumen:8
Número:6
DOI: http://dx.doi.org/10.1371/journal.pone.0063915
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v8_n6_p_Serra.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n6_p_Serra

Referencias:

  • Magurran, A., (2004) Measuring biological diversity, , Oxford, UK: Blackwell Science Ltd
  • McGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework (2007) Ecology Letters, 10, pp. 995-1015. , doi:10.1111/j.1461-0248.2007.01094.x
  • Hubbell, S.P., The unified neutral theory of biodiversity and biogeography (2001) Princeton Univ Dept of Art, p. 1
  • Rosindell, J., Hubbell, S.P., Etienne, R.S., The unified neutral theory of biodiversity and biogeography at age ten (2011) Trends Ecol Evol (Amst), 26, pp. 340-348. , doi:10.1016/j.tree.2011.03.024
  • Kimura, M., The Neutral Theory of Molecular Evolution (1985) Cambridge Univ Pr
  • Wright, S., Evolution in Mendelian Populations (1931) Genetics, 16, p. 97
  • Volkov, I., Banavar, J.R., Hubbell, S.P., Maritan, A., Neutral theory and relative species abundance in ecology (2003) Nature, 424, pp. 1035-1037. , doi:10.1038/nature01883
  • Alonso, D., Etienne, R.S., McKane, A.J., The merits of neutral theory (2006) Trends Ecol Evol (Amst), 21, pp. 451-457. , doi:10.1016/j.tree.2006.03.019
  • Bartolomé, C., Maside, X., Charlesworth, B., On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster (2002) Mol Biol Evol, 19, pp. 926-937
  • Rizzon, C., Marais, G., Gouy, M., Biémont, C., Recombination Rate and the Distribution of Transposable Elements in the Drosophila melanogaster Genome (2002) Genome Res, 12, pp. 400-407. , doi:10.1101/gr.210802
  • Le Rouzic, A., Boutin, T.S., Capy, P., Long-term evolution of transposable elements (2007) Proc Natl Acad Sci USA, 104, pp. 19375-19380. , doi:10.1073/pnas.0705238104
  • Brookfield, J.F.Y., The ecology of the genome - mobile DNA elements and their hosts (2005) Nat Rev Genet, 6, pp. 128-136. , doi:10.1038/nrg1524
  • Venner, S., Feschotte, C., Biémont, C., Dynamics of transposable elements: towards a community ecology of the genome (2009) Trends Genet, 25, pp. 317-323
  • Leonardo, T.E., Nuzhdin, S.V., Intracellular battlegrounds: conflict and cooperation between transposable elements (2002) Genet Res, 80, pp. 155-161
  • Kinsella, R.J., Kähäri, A., Haider, S., Zamora, J., Proctor, G., Ensembl BioMarts: a hub for data retrieval across taxonomic space (2011) Database (Oxford), 2011, pp. bar030. , doi:10.1093/database/bar030
  • Flicek, P., Amode, M.R., Barrell, D., Beal, K., Brent, S., Ensembl 2011 (2011) Nucleic Acids Res, 39, pp. D800-D806. , doi:10.1093/nar/gkq1064
  • Kapitonov, V.V., Jurka, J., A universal classification of eukaryotic transposable elements implemented in Repbase (2008) Nature Publishing Group, 9. , 411-2-authorreply414, doi:10.1038/nrg2165-c1
  • Blythe, R.A., McKane, A.J., Stochastic models of evolution in genetics, ecology and linguistics (2007) J Stat Mech, 2007, pp. P07018. , doi:10.1088/1742-5468/2007/07/P07018
  • Ewens, W., The sampling theory of selectively neutral alleles (1972) Theoretical Population Biology, 3, pp. 87-112. , doi:10.1016/0040-5809(72)90035-4
  • Etienne, R., A new sampling formula for neutral biodiversity (2005) Ecology Letters, 8, pp. 253-260
  • Jabot, F., Chave, J., Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference (2011) The American Naturalist, 178, pp. E37-E47. , doi:10.1086/660829
  • Hankin, R., Introducing untb, an R Package For Simulating Ecological Drift Under the Unified Neutral Theory of Biodiversity (2007) Journal of Statistical Software, 22, pp. 15pp
  • Wilks, S., The large-sample distribution of the likelihood ratio for testing composite hypotheses (1938) The Annals of Mathematical Statistics, 9, pp. 60-62
  • Benjamini, Y., Hochberg, Y., Controlling the false discovery rate: a practical and powerful approach to multiple testing (1995) Journal of the Royal Statistical Society Series B (Methodological), pp. 289-300
  • Etienne, R.S., A neutral sampling formula for multiple samples and an "exact" test of neutrality (2007) Ecology Letters, 10, pp. 608-618. , doi:10.1111/j.1461-0248.2007.01052.x
  • Arrhenius, O., Species and Area (1921) Journal of Ecology, 9, pp. 95-99
  • Rosenzweig, M.L., (1995) Species diversity in space and time, , Cambridge. UK: Cambridge University Press
  • Lynch, M., Conery, J.S., The origins of genome complexity (2003) Science, 302, pp. 1401-1404. , doi:10.1126/science.1089370
  • Cavalier-Smith, T., Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion (2005) Annals of Botany, 95, pp. 147-175. , doi:10.1093/aob/mci010
  • Ohta, T., Near-neutrality, robustness, and epigenetics (2011) Genome Biol Evol, 3, pp. 1034-1038. , doi:10.1093/gbe/evr012
  • Granlund, T., The GNU Multiple Precision Arithmetic Library, version 4.2 (2008), p. 2; Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P., MPFR (2007) ACM Trans Math Softw, 33, pp. 13-es. , doi:10.1145/1236463.1236468
  • Jabot, F., Etienne, R.S., Chave, J., Reconciling neutral community models and environmental filtering: theory and an empirical test (2008) Oikos, 117, pp. 1308-1320. , doi:10.1111/j.2008.0030-1299.16724.x
  • Jones, E., Oliphant, T., Peterson, P., (2001) SciPy: Open source scientific tools for Python, , others
  • Nelder, J., A Simplex Method for Function Minimization (1965) The Computer Journal
  • Byrd, R., Lu, P., Nocedal, J., A limited memory algorithm for bound constrained optimization... (1995) Journal on Scientific Computing
  • Etienne, R.S., Comment on "Neutral Ecological Theory Reveals Isolation and Rapid Speciation in a Biodiversity Hot Spot." (2006) Science, 311, pp. 610b. , doi:10.1126/science.1121914
  • Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., Golani, I., Controlling the false discovery rate in behavior genetics research (2001) Behav Brain Res, 125, pp. 279-284
  • Shannon, C., A mathematical theory of communication (1948) Bell System Technical Journal, 27, pp. 379-656

Citas:

---------- APA ----------
Serra, F., Becher, V. & Dopazo, H. (2013) . Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes. PLoS ONE, 8(6).
http://dx.doi.org/10.1371/journal.pone.0063915
---------- CHICAGO ----------
Serra, F., Becher, V., Dopazo, H. "Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes" . PLoS ONE 8, no. 6 (2013).
http://dx.doi.org/10.1371/journal.pone.0063915
---------- MLA ----------
Serra, F., Becher, V., Dopazo, H. "Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes" . PLoS ONE, vol. 8, no. 6, 2013.
http://dx.doi.org/10.1371/journal.pone.0063915
---------- VANCOUVER ----------
Serra, F., Becher, V., Dopazo, H. Neutral Theory Predicts the Relative Abundance and Diversity of Genetic Elements in a Broad Array of Eukaryotic Genomes. PLoS ONE. 2013;8(6).
http://dx.doi.org/10.1371/journal.pone.0063915