Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. © 2013 Pe'er et al.

Registro:

Documento: Artículo
Título:Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model
Autor:Pe'er, G.; Zurita, G.A.; Schober, L.; Bellocq, M.I.; Strer, M.; Müller, M.; Pütz, S.
Filiación:UFZ - Helmholtz Centre for Environmental Research, Department of Conservation Biology, Leipzig, Germany
UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Modelling, Leipzig, Germany
CONICET, Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones, Puerto Iguazú, Misiones, Argentina
CONICET, Departamento de Ecología, Genética y Evolución, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina
UFZ - Helmholtz Centre for Environmental Research, Department of Bioenergy, Leipzig, Germany
Center for Environmental Systems Research, University of Kassel, Kassel, Germany
Palabras clave:arable land; article; comparative study; controlled study; Dinamica EGO model; ecological phenomena and functions; environmental aspects and related phenomena; forest management; Generates Roads and Fields for reproducing Fragmentation effects model; habitat; habitat cover; habitat fragmentation; habitat loss; land use; maximum field disconnection; maximum field size; nonbiological model; number of road; principal component analysis; Qrule model; reproducibility; Simmap model; simple process based simulator; simulator; Computer Simulation; Conservation of Natural Resources; Ecosystem; Human Activities; Humans; Models, Theoretical; Regression Analysis; Software; Spatial Analysis
Año:2013
Volumen:8
Número:5
DOI: http://dx.doi.org/10.1371/journal.pone.0064968
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v8_n5_p_Peer.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n5_p_Peer

Referencias:

  • Gardner, R.H., Milne, B.T., Turner, M.G., O'Neill, R.V., Neutral models for the analysis of broad-scale landscape pattern (1987) Landscape Ecology, 1, pp. 19-28
  • Gardner, R.H., Walters, S., Neutral Landscape Models (2002) Learning Landscape Ecology: A Practical Guide to Concepts and Techniques New York, pp. 112-128. , Gergel E, Turner MG, editors, Springer-Verlag
  • With, K.A., The application of neutral landscape models in conservation biology (1997) ConservBiol, 11, pp. 1069-1080
  • King, A.W., With, K.A., Dispersal success on spatially structured landscapes: When do spatial pattern and dispersal behavior really matter? (2002) Ecological Modelling, 147, pp. 23-39
  • Chipperfield, J.D., Dytham, C., Hovestadt, T., An updated algorithm for the generation of neutral landscapes by spectral synthesis (2011) PLoS ONE, 6, pp. e17040
  • Pe'er, G., Henle, K., Dislich, C., Frank, K., Breaking functional connectivity into components: a novel approach using an individual-based model, and first outcomes (2011) PLoS ONE, 6, pp. e22355
  • Bocedi, G., Pe'er, G., Heikkinen, R.K., Matsinos, Y.G., Travis, J.M.J., Projecting species' range-shifting dynamics: sources of systematic biases when scaling up patterns and processes (2012) Methods in Ecology and Evolution, 3, pp. 1008-1018
  • Hiebeler, D., Populations on fragmented landscapes with spatially structured heterogeneities: Landscape generation and local dispersal (2000) Ecology, 81, pp. 1629-1641
  • Fahrig, L., Effects of habitat fragmentation on biodiversity (2003) Annual Review of Ecology Evolution and Systematics, 34, pp. 487-515
  • Gardner, R.H., Urban, D.L., Neutral models for testing landscape hypotheses (2007) Landscape Ecology, 22, pp. 15-29
  • Kubo, T., Iwasa, Y., Furumoto, N., Forest spatial dynamics with gap expansion: Total gap area and gap size distribution (1996) Journal of Theoretical Biology, 180, pp. 229-246
  • Wu, X.Q., Hu, Y.M., He, H.S., Bu, R.C., Onsted, J., Performance Evaluation of the SLEUTH Model in the Shenyang Metropolitan Area of Northeastern China (2009) Environmental Modeling & Assessment, 14, pp. 221-230
  • Schröder, B., Seppelt, R., Analysis of pattern-process interactions based on landscape models - Overview, general concepts, and methodological issues (2006) Ecological Modelling, 199, pp. 505-516
  • Saupe, D., (1988) Algorithms for random fractals, pp. 71-113. , The Science of Fractal Images New-York: Springer-Verlag
  • Keitt, T.H., Spectral representation of neutral landscapes (2000) Landscape Ecology, 15, pp. 479-493
  • Hargrove, W.W., Hoffman, F.M., Schwartz, P.M., A fractal landscape realizer for generating synthetic maps (2002) Conservation Ecology, 6
  • Li, B.L., Fractal geometry applications in description and analysis of patch patterns and patch dynamics (2000) Ecological Modelling, 132, pp. 33-50
  • Wood, J., Dykes, J., Slingsby, A., Clarke, K., Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup (2007) Ieee Transactions on Visualization and Computer Graphics, 13, pp. 1176-1183
  • Bonte, D., Hovestadt, T., Poethke, H.J., Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes (2010) Oikos, 119, pp. 560-566
  • Gardner, R.H., RULE: map generation and a spatial analysis program (1999) Landscape Ecological Analysis: Issues and Applications, pp. 280-303. , Klopatek JM, Gardner RH, editors, New York: Springer
  • Miranda, B.R., Sturtevant, B.R., Yang, J., Gustafson, E.J., Comparing fire spread algorithms using equivalence testing and neutral landscape models (2009) Landscape Ecology, 24, pp. 587-598
  • Riitters, K., Vogt, P., Soille, P., Estreguil, C., Landscape patterns from mathematical morphology on maps with contagion (2009) Landscape Ecology, 24, pp. 699-709
  • Wiegand, T., Moloney, K.A., Naves, J., Knauer, F., Finding the missing link between landscape structure and population dynamics: a spatially explicit perspective (1999) The American Naturalist, 154, pp. 605-627
  • Saura, S., Martínez-Millán, J., Landscape patterns simulation with a modified random clusters method (2000) Landscape Ecology, 15, pp. 661-678
  • Engel, J., Huth, A., Frank, K., Bioenergy production and Skylark (Alauda arvensis) population abundance - a modelling approach for the analysis of land-use change impacts and conservation options (2012) Global Change Biology Bioenergy
  • Dale, V.H., Pearson, S.M., Modeling the driving factors and ecological consequences of deforestation in the Brazilian Amazon (1999) Spatial Modeling of Forest Landscape Change: Approaches and Applications, pp. 256-276. , Mladenoff DJ, Baker WL, editors, Cambridge: Cambridge University Press
  • Baker, W.L., Spatial simulation of the effect of human and natural disturbance regimes on landscape structure (1999) Spatial Modeling of Forest Landscape Change: Approaches and Applications, pp. 277-308. , Mladenoff DJ, Baker WL, editors, Cambridge: Cambridge University Press
  • Clarke, K.C., Gaydos, L.J., Loose-coupling a cellular automaton model and GIS: long-term urban growth prediction for San Francisco and Washington/Baltimore (1998) Int J Geogr Inform Sci, 12, pp. 699-714
  • Soares, B.S., Coutinho Cerqueira, G., Lopes Pennachin, C., DINAMICA-a stochastic cellular automata model designed to simulate the landscape dynamics in an Amazonian colonization frontier (2002) Ecological Modelling, 154, pp. 217-235
  • Soares, B.S., Assuncao, R.M., Pantuzzo, A.E., Modeling the spatial transition probabilities of landscape dynamics in an amazonian colonization frontier (2001) Bioscience, 51, pp. 1059-1067
  • Nepstad, D., Soares, B.S., Merry, F., Lima, A., Moutinho, P., The end of deforestation in the Brazilian Amazon (2009) Science, 326, pp. 1350-1351
  • Laurance, W.F., Chapter 4: Habitat destruction: death by a thousand cuts (2010) Conservation Biology for All, pp. 73-87. , Sodhi NS, Ehrlich PR, editors, Oxford, UK: Oxford University Press
  • Ewers, R.M., Kliskey, A.D., Walker, S., Rutledge, D., Harding, J.S., Past and future trajectories of forest loss in New Zealand (2006) Biological Conservation, 133, pp. 312-325
  • Freitas, S.R., Hawbaker, T.J., Metzger, J.P., Effects of roads, topography, and land use on forest cover dynamics in the Brazilian Atlantic Forest (2010) Forest Ecology and Management, 259, pp. 410-417
  • Arima, E.Y., Walker, R.T., Perz, S.G., Caldas, M., Loggers and forest fragmentation: Behavioral models of road building in the Amazon basin (2005) Annals of the Association of American Geographers, 95, pp. 525-541
  • Kouba, Y., Alados, C.L., Spatio-temporal dynamics of Quercus faginea forests in the Spanish Central Pre-Pyrenees (2012) European Journal of Forest Research, 131, pp. 369-379
  • Bi, X.L., Wang, B., Lu, Q.S., Fragmentation effects of oil wells and roads on the Yellow River Delta, North China (2011) Ocean & Coastal Management, 54, pp. 256-264
  • Freudenberger, L., Hobson, P.R., Rupic, S., Pe'er, G., Schluck, M., Spatial Road Disturbance Index (SPROADI) for conservation planning: a novel landscape index, demonstrated for the State of Brandenburg, Germany (2013) Landscape Ecology
  • McGarigal, K., Cushman, S.A., Ene, E., (2012) FRAGSTATS(4.x): Spatial Pattern Analysis Program for Categorical and Continuous Maps, , Amherst: University of Massachusetts
  • Schumaker, N.H., Using landscape indices to predict habitat connectivity (1996) Ecology, 77, pp. 1210-1225
  • Opdam, P., Verboom, J., Pouwels, R., Landscape cohesion: an index for the conservation potential of landscapes for biodiversity (2003) Landscape Ecology, 18, pp. 113-126
  • Zurita, G.A., Bellocq, M.I., Spatial patterns of bird community similarity: bird responses to landscape composition and configuration in the Atlantic forest (2010) Landscape Ecology, 25, pp. 147-158
  • Pearson, S.M., Gardner, R.H., Neutral models: useful tools for understanding landscape patterns (1997) Wildlife and landscape ecology, effects of pattern and scale, pp. 215-230. , Bissonette JA, editor, New York, USA: Springer-Verlag
  • Gardner, R.H., O'Neill, R.V., Pattern, process and predictability: the use of neutral models for landscape analysis (1991) Quantitative methods in landscape ecology: The analysis and interpretation of landscape heterogeneity, pp. 289-307. , Turner MG, Gardner RH, editors, New York, USA: Springer-Verlag
  • Soares, B., Alencar, A., Nepstad, D., Cerqueira, G., Diaz, M.D.V., Simulating the response of land-cover changes to road paving and governance along a major Amazon highway: the Santarem-Cuiaba corridor (2004) Global Change Biology, 10, pp. 745-764
  • Teixeira, A.M.G., Soares, B.S., Freitas, S.R., Metzger, J.P., Modeling landscape dynamics in an Atlantic Rainforest region: Implications for conservation (2009) Forest Ecology and Management, 257, pp. 1219-1230
  • Jantz, C.A., Goetz, S.J., Shelley, M.K., Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area (2004) Environment and Planning B - Planning & Design, 31, pp. 251-271
  • Rafiee, R., Mahiny, A.S., Khorasani, N., Darvishsefat, A.A., Danekar, A., Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM) (2009) Cities, 26, pp. 19-26
  • Silva, E.A., Clarke, K.C., Complexity, emergence and cellular urban models: Lessons learned from applying sleuth to two Portuguese metropolitan areas (2005) European Planning Studies, 13, pp. 93-116
  • Herold, M., Goldstein, N.C., Clarke, K.C., The spatiotemporal form of urban growth: measurement, analysis and modeling (2003) Remote Sensing of Environment, 86, pp. 286-302
  • Pe'er, G., Saltz, D., Münkemüller, T., Matsinos, G.Y., Thulke, H.-H., Simple rules for complex landscapes: the case of hilltopping movements and topography (2013) Oikos
  • Selva, N., Kreft, S., Kati, V., Schluck, M., Jonsson, B.G., Roadless and low-traffic areas as conservation targets in Europe (2011) Environmental Management, 48, pp. 865-877
  • Ko, D.W., He, H.S., Larsen, D.R., Simulating private land ownership fragmentation in the Missouri Ozarks, USA (2006) Landscape Ecology, 21, pp. 671-686
  • Halley, J.M., Hartley, S., Kallimanis, A.S., Kunin, W.E., Lennon, J.J., Uses and abuses of fractal methodology in ecology (2004) Ecology Letters, 7, pp. 254-271
  • Asner, G.P., Keller, M., Silva, J.N.M., Spatial and temporal dynamics of forest canopy gaps following selective logging in the eastern Amazon (2004) Global Change Biology, 10, pp. 765-783
  • Shugart, H.H., (2003) A Theory of Forest Dynamics: The Ecological Implications of Forest Succession Models, , Caldwell, NJ: The Blackburn Press
  • Hawbaker, T.J., Radeloff, V.C., Roads and landscape pattern in northern Wisconsin based on a comparison of four road data sources (2004) Conservation Biology, 18, pp. 1233-1244
  • Henle, K., Kunin, W., Schweiger, O., Schmeller, D.S., Grobelnik, V., Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales: research needs and approaches of the SCALES project (2010) Gaia - Ecological Perspectives for Science and Society, 19, pp. 187-193
  • Tzanopoulos, J., Mouttet, R., Letourneau, A., Vogiatzakis, I.N., Potts, S.G., Scale sensitivity of drivers of environmental change across Europe (2013) Global Environmental Change, 23, pp. 167-178

Citas:

---------- APA ----------
Pe'er, G., Zurita, G.A., Schober, L., Bellocq, M.I., Strer, M., Müller, M. & Pütz, S. (2013) . Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model. PLoS ONE, 8(5).
http://dx.doi.org/10.1371/journal.pone.0064968
---------- CHICAGO ----------
Pe'er, G., Zurita, G.A., Schober, L., Bellocq, M.I., Strer, M., Müller, M., et al. "Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model" . PLoS ONE 8, no. 5 (2013).
http://dx.doi.org/10.1371/journal.pone.0064968
---------- MLA ----------
Pe'er, G., Zurita, G.A., Schober, L., Bellocq, M.I., Strer, M., Müller, M., et al. "Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model" . PLoS ONE, vol. 8, no. 5, 2013.
http://dx.doi.org/10.1371/journal.pone.0064968
---------- VANCOUVER ----------
Pe'er, G., Zurita, G.A., Schober, L., Bellocq, M.I., Strer, M., Müller, M., et al. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model. PLoS ONE. 2013;8(5).
http://dx.doi.org/10.1371/journal.pone.0064968