Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Research done in the last years strongly support the hypothesis that PIP aquaporin can form heterooligomeric assemblies, specially combining PIP2 monomers with PIP1 monomers. Nevertheless, the structural elements involved in the ruling of homo versus heterooligomeric organization are not completely elucidated. In this work we unveil some features of monomer-monomer interaction in Beta vulgaris PIP aquaporins. Our results show that while BvPIP2;2 is able to interact with BvPIP1;1, BvPIP2;1 shows no functional interaction. The lack of functional interaction between BvPIP2;1 and BvPIP1;1 was further corroborated by dose-response curves of water permeability due to aquaporin activity exposed to different acidic conditions. We also found that BvPIP2;1 is unable to translocate BvPIP1;1-ECFP from an intracellular position to the plasma membrane when co-expressed, as BvPIP2;2 does. Moreover we postulate that the first extracellular loop (loop A) of BvPIP2;1, could be relevant for the functional interaction with BvPIP1;1. Thus, we investigate BvPIP2;1 loop A at an atomic level by Molecular Dynamics Simulation (MDS) and by direct mutagenesis. We found that, within the tetramer, each loop A presents a dissimilar behavior. Besides, BvPIP2;1 loop A mutants restore functional interaction with BvPIP1;1. This work is a contribution to unravel how PIP2 and PIP1 interact to form functional heterooligomeric assemblies. We postulate that BvPIP2;1 loop A is relevant for the lack of functional interaction with BvPIP1;1 and that the monomer composition of PIP assemblies determines their functional properties. © 2013 Jozefkowicz et al.

Registro:

Documento: Artículo
Título:Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins
Autor:Jozefkowicz, C.; Rosi, P.; Sigaut, L.; Soto, G.; Pietrasanta, L.I.; Amodeo, G.; Alleva, K.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Quimica Fisica de los Materiales, Medio Ambiente y Energia (INQUIMAE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Centro de Microscopías Avanzadas (CMA) y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Genética Ewald A. Favret, CICVyA, INTA, Castelar, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Palabras clave:aquaporin; complementary RNA; article; beet; cell membrane; confocal microscopy; controlled study; dose response; molecular dynamics; mutagenesis; nonhuman; nucleotide sequence; oocyte; pH; phylogeny; protein content; protein expression; protein function; protein localization; protein protein interaction; RNA synthesis; sequence analysis; water permeability; water transport; Amino Acid Sequence; Animals; Aquaporins; Beta vulgaris; Cell Membrane Permeability; Conserved Sequence; Hydrogen-Ion Concentration; Molecular Dynamics Simulation; Molecular Sequence Data; Mutant Proteins; Osmosis; Plant Proteins; Protein Binding; Protein Structure, Secondary; Recombinant Proteins; Structure-Activity Relationship; Xenopus laevis
Año:2013
Volumen:8
Número:3
DOI: http://dx.doi.org/10.1371/journal.pone.0057993
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:aquaporin, 215587-75-0; Aquaporins; Mutant Proteins; Plant Proteins; Recombinant Proteins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v8_n3_p_Jozefkowicz.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n3_p_Jozefkowicz

Referencias:

  • Soto, G., Alleva, K., Amodeo, G., Muschietti, J., Ayub, N.D., New insight into the evolution of aquaporins from flowering plants and vertebrates: Orthologous identification and functional transfer is possible (2012) Gene, 503, pp. 165-176. , doi:10.1016/j.gene.2012.04.021
  • Verbavatz, J.M., Brown, D., Sabolić, I., Valenti, G., Ausiello, D.A., Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study (1993) J Cell Biol, 123, pp. 605-618
  • Murata, K., Mitsuoka, K., Hirai, T., Walz, T., Agre, P., Structural determinants of water permeation through aquaporin-1 (2000) Nature, 407, pp. 599-605. , doi:10.1038/35036519
  • Fujiyoshi, Y., Mitsuoka, K., De Groot, B.L., Philippsen, A., Grubmüller, H., Structure and function of water channels (2002) Curr Opin Struct Biol, 12, pp. 509-515
  • Törnroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Structural mechanism of plant aquaporin gating (2006) Nature, 439, pp. 688-694. , doi:10.1038/nature04316
  • Preston, G.M., Jung, J.S., Guggino, W.B., Agre, P., The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel (1993) J Biol Chem, 268, pp. 17-20
  • Shi, L.B., Verkman, A.S., Selected cysteine point mutations confer mercurial sensitivity to the mercurial-insensitive water channel MIWC/AQP-4 (1996) Biochemistry, 35, pp. 538-544. , doi:10.1021/bi9520038
  • Mathai, J.C., Agre, P., Hourglass pore-forming domains restrict aquaporin-1 tetramer assembly (1999) Biochemistry, 38, pp. 923-928. , doi:10.1021/bi9823683
  • Neely, J.D., Christensen, B.M., Nielsen, S., Agre, P., Heterotetrameric composition of aquaporin-4 water channels (1999) Biochemistry, 38, pp. 11156-11163. , doi:10.1021/bi990941s
  • Sorbo, J.G., Moe, S.E., Ottersen, O.P., Holen, T., The molecular composition of square arrays (2008) Biochemistry, 47, pp. 2631-2637. , doi:10.1021/bi702146k
  • Fetter, K., Van Wilder, V., Moshelion, M., Chaumont, F., Interactions between plasma membrane aquaporins modulate their water channel activity (2004) Plant Cell, 16, pp. 215-228. , doi:10.1105/tpc.017194
  • Mahdieh, M., Mostajeran, A., Horie, T., Katsuhara, M., Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants (2008) Plant Cell Physiol, 49, pp. 801-813. , doi:10.1093/pcp/pcn054
  • Zelazny, E., Borst, J.W., Muylaert, M., Batoko, H., Hemminga, M.A., FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization (2007) Proc Natl Acad Sci U S A, 104, pp. 12359-12364. , doi:10.1073/pnas.0701180104
  • Vandeleur, R.K., Mayo, G., Shelden, M.C., Gilliham, M., Kaiser, B.N., The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine (2009) Plant Physiol, 149, pp. 445-460. , doi:10.1104/pp.108.128645
  • Ayadi, M., Cavez, D., Miled, N., Chaumont, F., Masmoudi, K., Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance (2011) Plant Physiol Biochem, 49, pp. 1029-1039. , doi:10.1016/j.plaphy.2011.06.002
  • Cavez, D., Hachez, C., Chaumont, F., Maize black Mexican sweet suspension cultured cells are a convenient tool for studying aquaporin activity and regulation (2009) Plant Signal Behav, 4, pp. 890-892
  • Bellati, J., Alleva, K., Soto, G., Vitali, V., Jozefkowicz, C., Intracellular pH sensing is altered by plasma membrane PIP aquaporin co-expression (2010) Plant Mol Biol, 74, pp. 105-118. , doi:10.1007/s11103-010-9658-8
  • Otto, B., Uehlein, N., Sdorra, S., Fischer, M., Ayaz, M., Aquaporin tetramer composition modifies the function of tobacco aquaporins (2010) J Biol Chem, 285, pp. 31253-31260. , doi:10.1074/jbc.M110.115881
  • Bienert, G.P., Cavez, D., Besserer, A., Berny, M.C., Gilis, D., A conserved cysteine residue is involved in disulfide bond formation between plant plasma membrane aquaporin monomers (2012) Biochem J, 445, pp. 101-111. , doi:10.1042/BJ20111704
  • Mintseris, J., Weng, Z., Structure, function, and evolution of transient and obligate protein-protein interactions (2005) Proc Natl Acad Sci U S A, 102, pp. 10930-10935. , doi:10.1073/pnas.0502667102
  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol Biol Evol, 28, pp. 2731-2739. , doi:10.1093/molbev/msr121
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948. , doi:10.1093/bioinformatics/btm404
  • Schneider, T.D., Stephens, R.M., Sequence logos: a new way to display consensus sequences (1990) Nucleic Acids Res, 18, pp. 6097-6100
  • Crooks, G.E., Hon, G., Chandonia, J.-M., Brenner, S.E., WebLogo: a sequence logo generator (2004) Genome Res, 14, pp. 1188-1190. , doi:10.1101/gr.849004
  • Preston, G.M., Carroll, T.P., Guggino, W.B., Agre, P., Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein (1992) Science, 256, pp. 385-387
  • Alleva, K., Marquez, M., Villarreal, N., Mut, P., Bustamante, C., Cloning, functional characterization, and co-expression studies of a novel aquaporin (FaPIP2;1) of strawberry fruit (2010) J Exp Bot, 61, pp. 3935-3945. , doi:10.1093/jxb/erq210
  • Zhang, R.B., Verkman, A.S., Water and urea permeability properties of Xenopus oocytes: expression of mRNA from toad urinary bladder (1991) Am J Physiol, 260, pp. C26-C34
  • Agre, P., Mathai, J.C., Smith, B.L., Preston, G.M., Functional analyses of aquaporin water channel proteins (1999) Methods Enzymol, 294, pp. 550-572
  • Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins (2003) Nature, 425, pp. 393-397. , doi:10.1038/nature01853
  • Brooks, J.M., Wessel, G.M., Selective transport and packaging of the major yolk protein in the sea urchin (2003) Dev Biol, 261, pp. 353-370
  • Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201. , doi:10.1093/bioinformatics/bti770
  • Case, D.A., Darden, T.A., Cheatham III, T.E., Simmerling, C.L., Wang, J., (2010) AMBER11, , http://infoscience.epfl.ch/record/150146/files/Amber11.pdf?version=1, University of California, San Francisco. Available: Accessed 30 October 2012
  • Khandelia, H., Jensen, M.Ø., Mouritsen, O.G., To gate or not to gate: using molecular dynamics simulations to morph gated plant aquaporins into constitutively open conformations (2009) J Phys Chem B, 113, pp. 5239-5244. , doi:10.1021/jp809152c
  • Barone, L.M., Mu, H.H., Shih, C.J., Kashlan, K.B., Wasserman, B.P., Distinct biochemical and topological properties of the 31- and 27-kilodalton plasma membrane intrinsic protein subgroups from red beet (1998) Plant Physiol, 118, pp. 315-322
  • Zhou, Y., Setz, N., Niemietz, C., Qu, H., Offler, C.E., Aquaporins and unloading of phloem-imported water in coats of developing bean seeds (2007) Plant Cell Environ, 30, pp. 1566-1577. , doi:10.1111/j.1365-3040.2007.01732.x
  • Matsumoto, T., Lian, H.-L., Su, W.-A., Tanaka, D., Liu, C.W., Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice (2009) Plant Cell Physiol, 50, pp. 216-229
  • Jones, S., Thornton, J.M., Principles of protein-protein interactions (1996) Proc Natl Acad Sci U S A, 93, pp. 13-20
  • Betts, M.J., Sternberg, M.J., An analysis of conformational changes on protein-protein association: implications for predictive docking (1999) Protein Eng, 12, pp. 271-283
  • Hayward, S., Kitao, A., The effect of end constraints on protein loop kinematics (2010) Biophys J, 98, pp. 1976-1985. , doi:10.1016/j.bpj.2010.01.017
  • Kukulski, W., Schenk, A.D., Johanson, U., Braun, T., De Groot, B.L., The 5A structure of heterologously expressed plant aquaporin SoPIP2;1 (2005) J Mol Biol, 350, pp. 611-616. , doi:10.1016/j.jmb.2005.05.001
  • Sui, H., Han, B.G., Lee, J.K., Walian, P., Jap, B.K., Structural basis of water-specific transport through the AQP1 water channel (2001) Nature, 414, pp. 872-878. , doi:10.1038/414872a
  • Alleva, K., Niemietz, C.M., Sutka, M., Maurel, C., Parisi, M., Plasma membrane of Beta vulgaris storage root shows high water channel activity regulated by cytoplasmic pH and a dual range of calcium concentrations (2006) J Exp Botany, 57, pp. 609-621. , doi:10.1093/jxb/erj046
  • Alleva, K., Chara, O., Sutka, M.R., Amodeo, G., Analysis of the source of heterogeneity in the osmotic response of plant membrane vesicles (2009) Eur Biophys J, 38, pp. 175-184. , doi:10.1007/s00249-008-0365-1

Citas:

---------- APA ----------
Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G. & Alleva, K. (2013) . Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins. PLoS ONE, 8(3).
http://dx.doi.org/10.1371/journal.pone.0057993
---------- CHICAGO ----------
Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G., et al. "Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins" . PLoS ONE 8, no. 3 (2013).
http://dx.doi.org/10.1371/journal.pone.0057993
---------- MLA ----------
Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G., et al. "Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins" . PLoS ONE, vol. 8, no. 3, 2013.
http://dx.doi.org/10.1371/journal.pone.0057993
---------- VANCOUVER ----------
Jozefkowicz, C., Rosi, P., Sigaut, L., Soto, G., Pietrasanta, L.I., Amodeo, G., et al. Loop A Is Critical for the Functional Interaction of Two Beta vulgaris PIP Aquaporins. PLoS ONE. 2013;8(3).
http://dx.doi.org/10.1371/journal.pone.0057993