Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adhesion of bacterial pathogens to host cells is an event that determines infection, and ultimately invasion and intracellular multiplication. Several evidences have recently shown that this rule is also truth for the intracellular pathogen Brucella. Brucella suis displays the unipolar BmaC and BtaE adhesins, which belong to the monomeric and trimeric autotransporter (TA) families, respectively. It was previously shown that these adhesins are involved in bacterial adhesion to host cells and components of the extracellular matrix (ECM). In this work we describe the role of a new member of the TA family of B. suis (named BtaF) in the adhesive properties of the bacterial surface. BtaF conferred the bacteria that carried it a promiscuous adhesiveness to various ECM components and the ability to attach to an abiotic surface. Furthermore, BtaF was found to participate in bacterial adhesion to epithelial cells and was required for full virulence in mice. Similar to BmaC and BtaE, the BtaF adhesin was expressed in a small subpopulation of bacteria, and in all cases, it was detected at the new pole generated after cell division. Interestingly, BtaF was also implicated in the resistance of B. suis to porcine serum. Our findings emphasize the impact of TAs in the Brucella lifecycle. © 2013 Ruiz-Ranwez et al.

Registro:

Documento: Artículo
Título:The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence
Autor:Ruiz-Ranwez, V.; Posadas, D.M.; Estein, S.M.; Abdian, P.L.; Martin, F.A.; Zorreguieta, A.
Filiación:Fundación Instituto Leloir, IIBBA CONICET, Buenos Aires, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Laboratorio de Inmunología, Centro de Investigación Veterinaria de Tandil (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Provincia de Buenos Aires, Argentina
INSERM U1001, Faculté de Médecine, Université Paris Descartes, Paris, France
Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States
Palabras clave:bacterial protein; protein BtaF; unclassified drug; abiotic stress; animal cell; animal experiment; animal model; antibiotic resistance; antibody response; article; bacterial virulence; Brucella suis; brucellosis; cell adhesion; cell division; controlled study; extracellular matrix; female; gene locus; human; human cell; life cycle; mouse; nonhuman; polymerase chain reaction; population dynamics; protein aggregation; protein analysis; protein expression; protein function; protein localization; signal transduction; Adhesins, Bacterial; Animals; Bacterial Adhesion; Brucella suis; Brucellosis; Cell Line; Extracellular Matrix; Humans; Male; Mice; Multigene Family; Protein Multimerization; Protein Transport; Swine; Virulence
Año:2013
Volumen:8
Número:11
DOI: http://dx.doi.org/10.1371/journal.pone.0079770
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n11_p_RuizRanwez

Referencias:

  • Thorne, E.T., Brucellosis (2001) Infectious Diseases of Wild Mammals, pp. 372-395. , Williams ES, Barker IK, 3rd ed: Manson Publishing
  • Seleem, M.N., Boyle, S.M., Sriranganathan, N., Brucellosis: A re-emerging zoonosis (2010) Vet Microbiol, 140, pp. 392-398
  • Acha, P.N., Szyfres, B., (1980) Zoonoses and Communicable Diseases Common to Man and Animals, pp. xv+700. , Pan American Health Organization. Washington, D.C.: Pan American Health Organization, Pan American Sanitary Bureau, Regional Office of the World Health Organization
  • Pappas, G., Papadimitriou, P., Akritidis, N., Christou, L., Tsianos, E.V., The new global map of human brucellosis (2006) Lancet Infectious Diseases, 6 (2), pp. 91-99. , DOI 10.1016/S1473-3099(06)70382-6, PII S1473309906703826
  • Martirosyan, A., Moreno, E., Gorvel, J.P., An evolutionary strategy for a stealthy intracellular Brucella pathogen (2011) Immunol Rev, 240, pp. 211-234
  • Atluri, V.L., Xavier, M.N., De Jong, M.F., Den Hartigh, A.B., Tsolis, R.M., Interactions of the human pathogenic Brucella species with their hosts (2011) Annu Rev Microbiol, 65, pp. 523-541
  • Barquero-Calvo, E., Chaves-Olarte, E., Weiss, D.S., Guzman-Verri, C., Chacon-Diaz, C., Brucella abortus uses a stealthy strategy to avoid activation of the innate immune system during the onset of infection (2007) PLoS One, 2, pp. e631
  • Hoffmann, E.M., Houle, J.J., Failure of Brucella abortus lipopolysaccharide (LPS) to activate the alternative pathway of complement (1983) Veterinary Immunology and Immunopathology, 5 (1), pp. 65-76. , DOI 10.1016/0165-2427(83)90032-6
  • Conde-Alvarez, R., Arce-Gorvel, V., Iriarte, M., Mancek-Keber, M., Barquero-Calvo, E., The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition (2012) PLoS Pathog, 8, pp. e1002675
  • Celli, J., Gorvel, J.-P., Organelle robbery: Brucella interactions with the endoplasmic reticulum (2004) Current Opinion in Microbiology, 7 (1), pp. 93-97. , DOI 10.1016/j.mib.2003.11.001
  • Roop II, R.M., Gaines, J.M., Anderson, E.S., Caswell, C.C., Martin, D.W., Survival of the fittest: How Brucella strains adapt to their intracellular niche in the host (2009) Med Microbiol Immunol, 198, pp. 221-238
  • Pizarro-Cerda, J., Meresse, S., Parton, R.G., Van Der, G.G., Sola-Landa, A., Lopez-Goni, I., Moreno, E., Gorvel, J.-P., Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes (1998) Infection and Immunity, 66 (12), pp. 5711-5724
  • Pizarro-Cerda, J., Moreno, E., Sanguedolce, V., Mege, J.-L., Gorvel, J.-P., Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments (1998) Infection and Immunity, 66 (5), pp. 2387-2392
  • Pizarro-Cerda, J., Cossart, P., Bacterial adhesion and entry into host cells (2006) Cell, 124 (4), pp. 715-727. , DOI 10.1016/j.cell.2006.02.012, PII S0092867406001875
  • Castaneda-Roldan, E.I., Avelino-Flores, F., Dall'Agnol, M., Freer, E., Cedillo, L., Dornand, J., Giron, J.A., Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues (2004) Cellular Microbiology, 6 (5), pp. 435-445. , DOI 10.1111/j.1462-5822.2004.00372.x
  • Castaneda-Roldan, E.I., Ouahrani-Bettache, S., Saldana, Z., Avelino, F., Rendon, M.A., Dornand, J., Giron, J.A., Characterization of SP41, a surface protein of Brucella associated with adherence and invasion of host epithelial cells (2006) Cellular Microbiology, 8 (12), pp. 1877-1887. , DOI 10.1111/j.1462-5822.2006.00754.x
  • Dautin, N., Bernstein, H.D., Protein secretion in gram-negative bacteria via the autotransporter pathway (2007) Annual Review of Microbiology, 61, pp. 89-112. , DOI 10.1146/annurev.micro.61.080706.093233
  • Henderson, I.R., Navarro-Garcia, F., Desvaux, M., Fernandez, R.C., Ala'Aldeen, D., Type V protein secretion pathway: The autotransporter story (2004) Microbiology and Molecular Biology Reviews, 68 (4), pp. 692-744. , DOI 10.1128/MMBR.68.4.692-744.2004
  • Posadas, D.M., Ruiz-Ranwez, V., Bonomi, H.R., Martin, F.A., Zorreguieta, A., BmaC, a novel autotransporter of Brucella suis, is involved in bacterial adhesion to host cells (2012) Cell Microbiol, 14, pp. 965-982
  • Ruiz-Ranwez, V., Posadas, D.M., Van Der Henst, C., Estein, S.M., Arocena, G.M., BtaE, an Adhesin That Belongs to the Trimeric Autotransporter Family, Is Required for Full Virulence and Defines a Specific Adhesive Pole of Brucella suis (2013) Infect Immun, 81, pp. 996-1007
  • Hallez, R., Mignolet, J., Van Mullem, V., Wery, M., Vandenhaute, J., Letesson, J.-J., Jacobs-Wagner, C., De Bolle, X., The asymmetric distribution of the essential histidine kinase PdhS indicates a differentiation event in Brucella abortus (2007) EMBO Journal, 26 (5), pp. 1444-1455. , DOI 10.1038/sj.emboj.7601577, PII 7601577
  • Van Der Henst, C., Beaufay, F., Mignolet, J., Didembourg, C., Colinet, J., The Histidine Kinase PdhS Controls Cell Cycle Progression of the Pathogenic Alphaproteobacterium Brucella abortus (2012) J Bacteriol, 194, pp. 5305-5314
  • Brown, P.J., De Pedro, M.A., Kysela, D.T., Van Der Henst, C., Kim, J., Polar growth in the Alphaproteobacterial order Rhizobiales (2012) Proc Natl Acad Sci U S A, 109, pp. 1697-1701
  • Paulsen, I.T., Seshadri, R., Nelson, K.E., Eisen, J.A., Heidelberg, J.F., The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts (2002) Proc Natl Acad Sci U S a, 99, pp. 13148-13153
  • Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., Puhler, A., Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: Selection of defined deletions in the chromosome of Corynebacterium glutamicum (1994) Gene, 145 (1), pp. 69-73. , DOI 10.1016/0378-1119(94)90324-7
  • Kovach, M.E., Phillips, R.W., Elzer, P.H., Roop, R.M.I.I., Peterson, K.M., pBBR1MCS: A broad-host-range cloning vector (1994) BioTechniques, 16 (5), pp. 800-802
  • Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes (1995) Gene, 166, pp. 175-176
  • Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., The Pfam protein families database (2012) Nucleic Acids Res, 40, pp. D290-D301
  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: A new generation of protein database search programs (1997) Nucleic Acids Research, 25 (17), pp. 3389-3402. , DOI 10.1093/nar/25.17.3389
  • Szczesny, P., Lupas, A., Domain annotation of trimeric autotransporter adhesins - daTAA (2008) Bioinformatics, 24 (10), pp. 1251-1256. , DOI 10.1093/bioinformatics/btn118
  • Bendtsen, J.D., Nielsen, H., Von Heijne, G., Brunak, S., Improved prediction of signal peptides: SignalP 3.0 (2004) Journal of Molecular Biology, 340 (4), pp. 783-795. , DOI 10.1016/j.jmb.2004.05.028, PII S0022283604005972
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Higgins, D.G., Clustal W and Clustal X version 2.0 (2007) Bioinformatics, 23 (21), pp. 2947-2948. , DOI 10.1093/bioinformatics/btm404
  • Serruto, D., Spadafina, T., Scarselli, M., Bambini, S., Comanducci, M., HadA is an atypical new multifunctional trimeric coiled-coil adhesin of Haemophilus influenzae biogroup aegyptius, which promotes entry into host cells (2009) Cell Microbiol, 11, pp. 1044-1063
  • O'Toole, G.A., Pratt, L.A., Watnick, P.I., Newman, D.K., Weaver, V.B., Kolter, R., Genetic approaches to study of biofilms (1999) Methods in Enzymology, 310, pp. 91-109. , DOI 10.1016/S0076-6879(99)10008-9
  • Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685
  • Dotreppe, D., Mullier, C., Letesson, J.J., De Bolle, X., The alkylation response protein AidB is localized at the new poles and constriction sites in Brucella abortus (2011) BMC Microbiol, 11, p. 257
  • Cheng, H.P., Walker, G.C., Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti (1998) J Bacteriol, 180, pp. 5183-5191
  • Heesemann, J., Keller, C., Morawa, R., Plasmids of human strains of Yersinia enterocolitca: Molecular relatedness and possible importance for pathogenesis (1983) Journal of Infectious Diseases, 147 (1), pp. 107-115
  • Fine, D.P., Activation of the classic and alternate complement pathways by endotoxin (1974) J Immunol, 112, pp. 763-769
  • Henderson, I.R., Navarro-Garcia, F., Nataro, J.P., The great escape: Structure and function of the autotransporter proteins (1998) Trends in Microbiology, 6 (9), pp. 370-378. , DOI 10.1016/S0966-842X(98)01318-3, PII S0966842X98013183
  • Newman, C.L., Stathopoulos, C., Autotransporter and two-partner secretion: Delivery of large-size virulence factors by gram-negative bacterial pathogens (2004) Critical Reviews in Microbiology, 30 (4), pp. 275-286. , DOI 10.1080/10408410490499872
  • Jacob-Dubuisson, F., Fernandez, R., Coutte, L., Protein secretion through autotransporter and two-partner pathways (2004) Biochimica et Biophysica Acta - Molecular Cell Research, 1694 (1-3 SPEC.ISS.), pp. 235-257. , DOI 10.1016/j.bbamcr.2004.03.008, PII S0167488904000886
  • Cotter, S.E., Surana, N.K., St. III, G.J.W., Trimeric autotransporters: A distinct subfamily of autotransporter proteins (2005) Trends in Microbiology, 13 (5), pp. 199-205. , DOI 10.1016/j.tim.2005.03.004
  • Hoiczyk, E., Roggenkamp, A., Reichenbecher, M., Lupas, A., Heesemann, J., Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins (2000) Embo J, 19, pp. 5989-5999
  • Kurowski, M.A., Bujnicki, J.M., GeneSilico protein structure prediction meta-server (2003) Nucleic Acids Research, 31 (13), pp. 3305-3307. , DOI 10.1093/nar/gkg557
  • Conners, R., Hill, D.J., Borodina, E., Agnew, C., Daniell, S.J., The Moraxella adhesin UspA1 binds to its human CEACAM1 receptor by a deformable trimeric coiled-coil (2008) Embo J, 27, pp. 1779-1789
  • Fernandez-Prada, C.M., Nikolich, M., Vemulapalli, R., Sriranganathan, N., Boyle, S.M., Schurig, G.G., Hadfield, T.L., Hoover, D.L., Deletion of wboA enhances activation of the lectin pathway of complement in Brucella abortus and Brucella melitensis (2001) Infection and Immunity, 69 (7), pp. 4407-4416. , DOI 10.1128/IAI.69.7.4407-4416.2001
  • Nordstrom, T., Blom, A.M., Forsgren, A., Riesbeck, K., The emerging pathogen Moraxella catarrhalis interacts with complement inhibitor C4b binding protein through ubiquitous surface proteins A1 and A2 (2004) Journal of Immunology, 173 (7), pp. 4598-4606
  • Hallstrom, T., Nordstrom, T., Tan, T.T., Manolov, T., Lambris, J.D., Immune evasion of Moraxella catarrhalis involves ubiquitous surface protein A-dependent C3d binding (2011) J Immunol, 186, pp. 3120-3129
  • Delpino, M.V., Marchesini, M.I., Estein, S.M., Comerci, D.J., Cassataro, J., Fossati, C.A., Baldi, P.C., A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice (2007) Infection and Immunity, 75 (1), pp. 299-305. , DOI 10.1128/IAI.00952-06
  • Paixao, T.A., Roux, C.M., Den Hartigh, A.B., Sankaran-Walters, S., Dandekar, S., Establishment of systemic Brucella melitensis infection through the digestive tract requires urease, the type IV secretion system, and lipopolysaccharide O antigen (2009) Infect Immun, 77, pp. 4197-4208
  • Godefroid, M., Svensson, M.V., Cambier, P., Uzureau, S., Mirabella, A., Brucella melitensis 16M produces a mannan and other extracellular matrix components typical of a biofilm (2010) FEMS Immunol Med Microbiol, 59, pp. 364-377
  • Hernandez-Castro, R., Verdugo-Rodriguez, A., Luis, P.J., Suarez-Guemes, F., The BMEI0216 gene of Brucella melitensis is required for internalization in HeLa cells (2008) Microbial Pathogenesis, 44 (1), pp. 28-33. , DOI 10.1016/j.micpath.2007.08.008, PII S0882401007000976
  • Czibener, C., Ugalde, J.E., Identification of a unique gene cluster of Brucella spp. That mediates adhesion to host cells (2012) Microbes Infect, 14, pp. 79-85
  • Kaiser, P.O., Linke, D., Schwarz, H., Leo, J.C., Kempf, V.A., Analysis of the BadA stalk from Bartonella henselae reveals domain-specific and domain-overlapping functions in the host cell infection process (2012) Cell Microbiol, 14, pp. 198-209
  • Bujnicki, J.M., Elofsson, A., Fischer, D., Rychlewski, L., Structure prediction meta server (2001) Bioinformatics, 17 (8), pp. 750-751
  • Verger, J.M.M.G., Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization (1985) Int J Syst Bacteriology, 35, pp. 292-295
  • Moreno, E., Berman, D.T., Boettcher, L.A., Biological activities of Brucella abortus lipopolysaccharides (1981) Infection and Immunity, 31 (1), pp. 362-370
  • Marr, N., Shah, N.R., Lee, R., Kim, E.J., Fernandez, R.C., Bordetella pertussis autotransporter Vag8 binds human C1 esterase inhibitor and confers serum resistance (2011) PLoS One, 6, pp. e20585
  • Fernandez, R.C., Weiss, A.A., Cloning and sequencing of a Bordetella pertussis serum resistance locus (1994) Infection and Immunity, 62 (11), pp. 4727-4738
  • Attia, A.S., Lafontaine, E.R., Latimer, J.L., Aebi, C., Syrogiannopoulos, G.A., Hansen, E.J., The UspA2 protein of Moraxella catarrhalis is directly involved in the expression of serum resistance (2005) Infection and Immunity, 73 (4), pp. 2400-2410. , DOI 10.1128/IAI.73.4.2400-2410.2005
  • Pizarro-Cerdá, J., Moreno, E., Gorvel, J.P., (1999) Brucella Abortus: Invasion and Survival Within Professional and Non-professional Phagocytes, , Tartakoff A, and Gordon S, Greenwich: Jai Press Inc
  • Skerker, J.M., Laub, M.T., Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus (2004) Nature Reviews Microbiology, 2 (4), pp. 325-337. , DOI 10.1038/nrmicro864
  • Tomlinson, A.D., Fuqua, C., Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens (2009) Curr Opin Microbiol, 12, pp. 708-714

Citas:

---------- APA ----------
Ruiz-Ranwez, V., Posadas, D.M., Estein, S.M., Abdian, P.L., Martin, F.A. & Zorreguieta, A. (2013) . The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence. PLoS ONE, 8(11).
http://dx.doi.org/10.1371/journal.pone.0079770
---------- CHICAGO ----------
Ruiz-Ranwez, V., Posadas, D.M., Estein, S.M., Abdian, P.L., Martin, F.A., Zorreguieta, A. "The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence" . PLoS ONE 8, no. 11 (2013).
http://dx.doi.org/10.1371/journal.pone.0079770
---------- MLA ----------
Ruiz-Ranwez, V., Posadas, D.M., Estein, S.M., Abdian, P.L., Martin, F.A., Zorreguieta, A. "The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence" . PLoS ONE, vol. 8, no. 11, 2013.
http://dx.doi.org/10.1371/journal.pone.0079770
---------- VANCOUVER ----------
Ruiz-Ranwez, V., Posadas, D.M., Estein, S.M., Abdian, P.L., Martin, F.A., Zorreguieta, A. The BtaF trimeric autotransporter of Brucella suis is involved in attachment to various surfaces, resistance to serum and virulence. PLoS ONE. 2013;8(11).
http://dx.doi.org/10.1371/journal.pone.0079770