Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Treatments based on electroporation (EP) induce the formation of pores in cell membranes due to the application of pulsed electric fields. We present experimental evidence of the existence of pH fronts emerging from both electrodes during treatments based on tissue EP, for conditions found in many studies, and that these fronts are immediate and substantial. pH fronts are indirectly measured through the evanescence time (ET), defined as the time required for the tissue buffer to neutralize them. The ET was measured through a pH indicator imaged at a series of time intervals using a four-cluster hard fuzzy-c-means algorithm to segment pixels corresponding to the pH indicator at every frame. The ET was calculated as the time during which the number of pixels was 10% of those in the initial frame. While in EP-based treatments such as reversible (ECT) and irreversible electroporation (IRE) the ET is very short (though enough to cause minor injuries) due to electric pulse characteristics and biological buffers present in the tissue, in gene electrotransfer (GET), ET is much longer, enough to denaturate plasmids and produce cell damage. When any of the electric pulse parameters is doubled or tripled the ET grows and, remarkably, when any of the pulse parameters in GET is halved, the ET drops significantly. Reducing pH fronts has relevant implications for GET treatment efficiency, due to a substantial reduction of plasmid damage and cell loss. © 2013 Maglietti et al.

Registro:

Documento: Artículo
Título:The role of Ph fronts in tissue electroporation based treatments
Autor:Maglietti, F.; Michinski, S.; Olaiz, N.; Castro, M.; Suárez, C.; Marshall, G.
Filiación:Laboratorio de Sistemas Complejos, Departamento de Computación, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires, Argentina
Grupo de Investigación Y Desarrollo en Bioingeniería, CONICET, Universidad Tecnológica Nacional (UTN/Facultad Regional Buenos Aires (FRBA), Buenos Aires, Argentina
Palabras clave:Algorithms; Animals; Dogs; Electrochemotherapy; Electroporation; Fuzzy Logic; Hydrogen-Ion Concentration
Año:2013
Volumen:8
Número:11
DOI: http://dx.doi.org/10.1371/journal.pone.0080167
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CODEN:POLNC
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v8_n11_p_Maglietti

Referencias:

  • http://globocan.iarc.fr/, web site. Available: Accessed 2013 Oct; Cancer Fact Sheet N297, , http://www.who.int/mediacentre/factsheets/fs297/en/, web site. Available: Accesed 2013 Oct
  • Mir, L., Bases and rationale of the electrochemotherapy (2006) European Jorunal of Cancer Supplements, 4, pp. 38-44
  • Kotnik, T., Kramar, P., Pucihar, G., Miklavcic, D., Tarek, M., Cell Membrane Electroporation - Part 1: The Phenomenon (2012) IEEE Electrical Insulation Magazine, 28, pp. 14-23
  • Kee, S.T., Gehl, J., Lee, E.W., (2006) Clinical Aspects of Electroporation, p. 256. , New York: Springer
  • Rubisnky, B., Irreversible electroporation in medicine (2007) Technol Cancer Res Treat, 6, pp. 255-260
  • Crowley, J.M., Electrical breakdown of bimolecular lipid membranes as an electromechanical instability (1973) Biophys J, 13, pp. 711-724
  • Zimmermann, U., Pilwat, G., Riemann, F., Dielectric breakdown of cell membranes (1974) Biophys J, 14, pp. 881-899
  • Kinosita Jr., K., Tsong, T.T., Hemolysis of human erythrocytes by transient electric field (1977) Proc Natl Acad Sci USA, 74, pp. 1923-1927
  • Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H., Gene transfer into mouse glyoma cells by electroporation in high electric fields (1982) The EMBO Journal, 1, pp. 841-845
  • Wong, T.K., Neumann, E., Electric field mediated gene transfer (1982) Biochem Biophys Res Commun, 107, pp. 584-587
  • Orlowski, S., Mir, L.M., Cell electropermeabilization: A new tool for biochemical and pharmacological studies (1993) Biochem Biophys Acta, 1154, pp. 51-63
  • Weaver, J.C., Electroporation: A general phenomenon for manipulating cells and tissues (1993) J Cell Biochem, 51, pp. 426-435
  • Belehradek, M., Domenge, C., Luboinski, B., Orlowski, S., Belehradek Jr., J., Electrochmotherapy, a new antitumor treatment. First clinical phase I-II trial (1993) Cancer, 72, pp. 3694-3700
  • Nanda, G.S., Sun, F.X., Hofmann, G.A., Hoffman, R.M., Dev, S.B., Electroporation therapy of human larynx tumors HEp-2 implanted in nude mice (1998) Anticancer Res, 72, pp. 999-1004
  • Gehl, J., Electroporation: Theory and methods, perspectives for drug delivery, gene therapy and research (2003) Acta Physiol Scand, 177, pp. 437-447
  • Gothelf, A., Mir, L.M., Gehl, J., Electrochemotherapy: Results of cancer treatment using enhanced delivery of bleomycin by electroporation (2003) Cancer Treat Rev, 29, pp. 371-387
  • Bloquel, C., Fabre, E., Bureau, M.F., Scherman, D., Plasmid DNA electrotransfer fon intracellular and secreted proteins expression: New methodological developments and applications (2004) J Gene Med, 6, pp. S11-S23
  • Maxim, P.G., Carson, J.J., Ning, S., Knox, S.J., Bover, A.L., Enhanced effectiveness of radiochemotherapy with tirapazamine by local application of electric pulses to tumors (2004) Radiat Res, 162, pp. 185-193
  • Sersa, G., The state-of-the-art of electrochemotherapy before the ESOPE study; advantages and clinical uses (2006) Eur J Cancer Supp, 4, pp. 52-59
  • Sersa, G., Miklavcic, D., Cemazar, M., Rudolf, Z., Pucihar, G., Electrochemothepray in treatment of tumours (2008) Eur J Surg Oncol, 34, pp. 232-240
  • Mir, L.M., Gehl, J., Sersa, G., Collins, C., Garbat, J.R., Standard Operating Procedures of the Electrochemotherapy: Instructions for the use of bleomycin or cisplatin administered either systemically or locally and electric pulses delivered by the CliniporatorTM by means of invasive or non-invasive electrodes (2006) Eur J Cancer Supp, 4, pp. 14-25
  • Sersa, G., Garbay, J.R., Gehl, J., Collins, C., Snoj, M., Electro-chemotherapy - A simple, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures for Electrochemotherapy) study (2006) Eur J Cancer Supp, 4, pp. 3-13
  • Mali, B., Jarm, T., Snoj, M., Sersa, G., Miklavcic, D., Antitumor effectiveness of electrochemotherapy: A systematic review and meta-analysis (2013) Eur J Sur Oncol, 39, pp. 4-16
  • Andre, F., Mir, L., DNA electrotransfer: Its principles and an updated review of its therapeutic applications (2004) Gene Therapy, 11, pp. S33-S42
  • Gothelf, A., Gehl, J., Gene Electrotransfer to Skin; Review of Existing Literature and Clinical Perspectives (2010) Curr Gene Ther, 10, pp. 287-299
  • Edd, J.F., Horowitz, L., Davalos, R.V., Mir, L.M., Rubisnky, B., In vivo results of a new focal tissue ablation technique: Irreversible electroporation (2006) IEEE Trans Biomed Eng, 53, pp. 1409-1415
  • Vernier, P.T., Sun, Y., Marcu, L., Salemi, S., Craft, C.M., Calcium bursts induced by nanosecond electric pulses (2003) Biochem Biophys Res Commun, 10, pp. 86-295
  • Beebe, S.J., Fox, P.M., Rec, L.J., Somers, K., Stark, R.H., Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: Apoptosis induction and tumor growth inhibition (2002) IEEE Trans Plasma Sci, 30, pp. 286-292
  • Haberl, S., Miklavcic, D., Sersa, G., Frey, W., Rubisnky, B., Cell Membrane Electroporation - Part 2: The Applications (2013) IEEE Electrical Insulation Magazine, 29, pp. 29-37
  • Hofmn, G.A., Dev, S.B., Dimmer, S., Nanda, G.S., Electroporation therapy: A new approach for the treatment of head and neck cancer (1999) Trans Biomed Eng, 46, pp. 752-759
  • Daud, A.I., De Conti, R.C., Andrews, S., Urbas, P., Riker, A.I., Phase I Trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma (2008) J Clin Oncol, 26, pp. 5896-5903
  • Arena, C., Sano, M., Rossmeisl Jr., J., Cladwell, J., Garcia, P., High-Frequency Irreversible Electroporation (H-FIRE) for Non-thermal Ablation without Muscle Contraction (2011) Biomed Eng Online, , doi:10.1186/1475-925X-10-102
  • Jaichandran, S., Steven, T.B., Adrian, B.M., Liam, P.H., Sim, L.T., In Vivo Liver Electroporation: Optimization and Demonstration of Therapeutic Efficacy (2006) Hum Gene Ther, 17, pp. 362-375
  • Zhou, R., Norton, J.E., Zhang, N., Dean, D.A., Electroporation-mediated transfer of plasmids to the lung results in reducen TLR9 signaling and inflammation (2007) Gene Ther, , doi:10.1038/sj.gt.3302936
  • Cadossi, R., Fini, M., Ronchetti, M., De Terlizzi, F., Cavani, F., Electroporation of Bone Tissue: Implications of Use in the Tretment of Bone Metastasis with Electrochemotherapy (2007) IFMBE Proc, 13, pp. 8-9
  • Soden, D.M., Larinka, J.O., Collins, C.G., Tangney, M., Aarons, S., Successful application of targeted electrochemotherapy using novel flexible electrodes and low dose bleomycin to solid tumours (2006) Cancer Lett, 232, pp. 300-310
  • Saulis, G., Lape, R., Prabeviciute, R., Mickevicius, D., Changes of the solution pH due to exposure by high-voltage electric pulses (2005) Bioelectrochemistry, 67, pp. 101-108
  • Turjanski, P., Olaiz, N., Maglietti, F., Michinski, S., Suarez, C., The role of pH fronts in reversible electroporation (2011) Plos ONE, , doi:10.1371/journal.-pone.0017303
  • Xin, Y., Organization and spread of electrochemical therapy (ECT) in China (1994) Eur J Surg Suppl, 574, pp. 25-30
  • Nilsson, E., Von Euler, H., Berendson, J., Thorne, A., Wersall, P., Electrochemical treatment of tumours (2000) Bioelectrochemistry, 51, pp. 1-11
  • Colombo, L., Gonzalez, G., Marshall, G., Molina, F., Soba, A., Ion transport in tumors under electrochemical treatment: In vivo, invitro and in cilico modeling (2007) Bioelectrochemistry, 71, pp. 223-232
  • Turjanski, P., Olaiz, N., Abou-Adal, P., Suarez, C., Risk, M., pH front tracking in the electrochemical treatment (EChT) of tumors: Experiments and simulations (2009) Electrochim Acta, 54, pp. 6199-6206
  • Olaiz, N., Suarez, C., Risk, M., Molina, F., Marshall, G., Tracking protein electrodenaturation fronts in the electrochemical treatment of tumors (2009) Electrochem Commun, 12, pp. 94-97
  • Marshall, G., Mocskos, P., Swinney, H.L., Huth, J.M., Buoyancy and electrically driven convection models in thin-layer electrodeposition (1999) Phys Rev E, 59, pp. 2157-2167
  • Finch, J., Fosh, B., Anthony, A., Slimani, E., Texler, M., Liver electrolysis: PH can reliably monitor the extent of hepatic ablation in pigs (2002) Clin Sci, 102, pp. 389-395
  • Wells, D.J., Gene Therapy Pogress and Prespects: Electroporation and other physical methods (2004) Gene Ther, 18, pp. 1363-1369
  • Lando, D., Haroutiunian, S., Kul'Ba, A., Dalian, E., Orioli, P., Theoretical and experimental study of DNA helix-coil transition in acidic and alkaline medium (1994) J Biomol Struct Dyn, 12, pp. 355-366
  • Dubey, R., Tripathi, D., A study of thermal denaturation/renaturation in DNA using laser light scattering: A new approach (2005) Indian J Biochem Biophys, 42, pp. 301-307
  • Ageno, M., Dore, E., Frontali, C., The alkaline denaturation of DNA (1969) Biophys J, 11, pp. 1281-1311
  • Mir, L., Nucleic acids electrotransfer-based gene therapy (electrogenetherapy): Past, current, and future (2009) Mol Biotechnol, 43, pp. 167-176
  • Saulis, G., Rodaite-Riševičiene, R., Snitkab, V., Increase of the roughness of the stainless-steel anode surface due to the exposure to high-voltage electric pulses as revealed by atomic force microscopy (2007) Bioelectrochemistry, 70, pp. 519-523
  • Miklavcic, D., Pucihar, G., Pavlovec, M., Ribaric, S., Mali, M., The effect of high frequency electric pulses on muscle contractions and antitumor efficiency in vivo for a potential use in clinical electrochemotherapy (2005) Bioelectrochemistry, 65, pp. 121-128
  • Zupanic, A., Ribaric, S., Miklavcic, D., Increasing the repetition frequency of electric pulse delivery reduces unpleasant sensations that occur in electro-chemotherapy (2007) Neoplasma, 54, pp. 246-250
  • Davalos, R., Rubinsky, B., Mir, L., Theoretical analysis of the thermal effects during in vivo tissue electroporation (2003) Bioelectrochemistry, 61, pp. 99-107
  • Pliquett, U.F., Martin, G.T., Weaver, J.C., Kinetics of the temperature rise within human stratum corneum during electroporation and pulsed high-voltage iontophoresis (2002) Bioelectrochemistry, 57, pp. 65-72
  • Becker, S.M., Kuznetsov, A.V., Numerical modeling of in vivo plate electroporation thermal dose assessment (2006) J Biomech Eng, 128, pp. 76-84
  • Olaiz, N., Maglietti, F., Suarez, C., Molina, F.V., Miklavcic, D., Electrochemical treatment of tumors using a one-probe two-electrode device (2010) Electrochimica Acta, 55, pp. 6010-6014
  • De Vry, J., Martinez-Martinez, P., Losen, M., Bode, G., Temel, Y., Low current-driven micro-electroporation allows efficient in vivo delivery of nonviral DNA into the adult mouse bain (2010) Mol Ther, 18, pp. 1183-1191

Citas:

---------- APA ----------
Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C. & Marshall, G. (2013) . The role of Ph fronts in tissue electroporation based treatments. PLoS ONE, 8(11).
http://dx.doi.org/10.1371/journal.pone.0080167
---------- CHICAGO ----------
Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G. "The role of Ph fronts in tissue electroporation based treatments" . PLoS ONE 8, no. 11 (2013).
http://dx.doi.org/10.1371/journal.pone.0080167
---------- MLA ----------
Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G. "The role of Ph fronts in tissue electroporation based treatments" . PLoS ONE, vol. 8, no. 11, 2013.
http://dx.doi.org/10.1371/journal.pone.0080167
---------- VANCOUVER ----------
Maglietti, F., Michinski, S., Olaiz, N., Castro, M., Suárez, C., Marshall, G. The role of Ph fronts in tissue electroporation based treatments. PLoS ONE. 2013;8(11).
http://dx.doi.org/10.1371/journal.pone.0080167