Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Frataxin (FXN) is an α/β protein that plays an essential role in iron homeostasis. Apparently, the function of human FXN (hFXN) depends on the cooperative formation of crucial interactions between helix α1, helix α2, and the C-terminal region (CTR) of the protein. In this work we quantitatively explore these relationships using a purified recombinant fragment hFXN90-195. This variant shows the hydrodynamic behavior expected for a monomeric globular domain. Circular dichroism, fluorescence, and NMR spectroscopies show that hFXN90-195 presents native-like secondary and tertiary structure. However, chemical and temperature induced denaturation show that CTR truncation significantly destabilizes the overall hFXN fold. Accordingly, limited proteolysis experiments suggest that the native-state dynamics of hFXN90-195 and hFXN90-210 are indeed different, being the former form much more sensitive to the protease at specific sites. The overall folding dynamics of hFXN fold was further explored with structure-based protein folding simulations. These suggest that the native ensemble of hFXN can be decomposed in at least two substates, one with consolidation of the CTR and the other without consolidation of the CTR. Explicit-solvent all atom simulations identify some of the proteolytic target sites as flexible regions of the protein. We propose that the local unfolding of CTR may be a critical step for the global unfolding of hFXN, and that modulation of the CTR interactions may strongly affect hFXN physiological function. © 2012 Roman et al.

Registro:

Documento: Artículo
Título:Protein Stability and Dynamics Modulation: The Case of Human Frataxin
Autor:Roman, E.A.; Faraj, S.E.; Gallo, M.; Salvay, A.G.; Ferreiro, D.U.; Santos, J.
Filiación:Instituto de Química y Físico-Química Biológicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
Instituto de Física de Líquidos y Sistemas Biológicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
Departamento de Ciencia y Tecnología, Universidad Nacional Quilmes, Bernal, Provincia de Buenos Aires, Argentina
Protein Physiology Laboratory, Departamento de Química Biológica-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:frataxin; alpha helix; article; carboxy terminal sequence; circular dichroism; fluorescence analysis; hydrodynamics; nuclear magnetic resonance spectroscopy; protein folding; protein function; protein secondary structure; protein stability; protein tertiary structure; protein unfolding; quantitative analysis; structure analysis; Circular Dichroism; Homeostasis; Humans; Hydrodynamics; Iron; Iron-Binding Proteins; Magnetic Resonance Spectroscopy; Microscopy, Fluorescence; Models, Molecular; Molecular Conformation; Molecular Dynamics Simulation; Point Mutation; Protein Denaturation; Protein Folding; Protein Structure, Tertiary; Recombinant Proteins; Solvents; Temperature; Time Factors
Año:2012
Volumen:7
Número:9
DOI: http://dx.doi.org/10.1371/journal.pone.0045743
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:Iron, 7439-89-6; Iron-Binding Proteins; Recombinant Proteins; Solvents; frataxin
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n9_p_Roman.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n9_p_Roman

Referencias:

  • Pandolfo, M., Friedreich ataxia: the clinical picture (2009) J Neurol, 256 (SUPPL. 1), pp. 3-8
  • Pandolfo, M., Pastore, A., The pathogenesis of Friedreich ataxia and the structure and function of frataxin (2009) J Neurol, 256 (SUPPL. 1), pp. 9-17
  • Puccio, H., Conditional mouse models for Friedreich ataxia, a neurodegenerative disorder associating cardiomyopathy (2007) Handb Exp Pharmacol, pp. 365-375
  • Seznec, H., Simon, D., Bouton, C., Reutenauer, L., Hertzog, A., Friedreich ataxia: the oxidative stress paradox (2005) Hum Mol Genet, 14, pp. 463-474
  • Baralle, M., Pastor, T., Bussani, E., Pagani, F., Influence of Friedreich ataxia GAA noncoding repeat expansions on pre-mRNA processing (2008) Am J Hum Genet, 83, pp. 77-88
  • Patel, P.I., Isaya, G., Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency (2001) Am J Hum Genet, 69, pp. 15-24
  • Gottesfeld, J.M., Small molecules affecting transcription in Friedreich ataxia (2007) Pharmacol Ther, 116, pp. 236-248
  • Gellera, C., Castellotti, B., Mariotti, C., Mineri, R., Seveso, V., Frataxin gene point mutations in Italian Friedreich ataxia patients (2007) Neurogenetics, 8, pp. 289-299
  • Condo, I., Ventura, N., Malisan, F., Rufini, A., Tomassini, B., In vivo maturation of human frataxin (2007) Hum Mol Genet, 16, pp. 1534-1540
  • Long, S., Jirku, M., Ayala, F.J., Lukes, J., Mitochondrial localization of human frataxin is necessary but processing is not for rescuing frataxin deficiency in Trypanosoma brucei (2008) Proc Natl Acad Sci U S A, 105, pp. 13468-13473
  • Schmucker, S., Argentini, M., Carelle-Calmels, N., Martelli, A., Puccio, H., The in vivo mitochondrial two-step maturation of human frataxin (2008) Hum Mol Genet, 17, pp. 3521-3531
  • Yoon, T., Dizin, E., Cowan, J.A., N-terminal iron-mediated self-cleavage of human frataxin: regulation of iron binding and complex formation with target proteins (2007) J Biol Inorg Chem, 12, pp. 535-542
  • Foury, F., Pastore, A., Trincal, M., Acidic residues of yeast frataxin have an essential role in Fe-S cluster assembly (2007) EMBO Rep, 8, pp. 194-199
  • Iannuzzi, C., Adinolfi, S., Howes, B.D., Garcia-Serres, R., Clemancey, M., The role of CyaY in iron sulfur cluster assembly on the E. coli IscU scaffold protein (2011) PLoS One, 6, pp. e21992
  • Leidgens, S., de Smet, S., Foury, F., Frataxin interacts with Isu1 through a conserved tryptophan in its beta-sheet (2010) Hum Mol Genet, 19, pp. 276-286
  • Prischi, F., Konarev, P.V., Iannuzzi, C., Pastore, C., Adinolfi, S., Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly (2010) Nat Commun, 1, p. 95
  • Tsai, C.L., Barondeau, D.P., Human frataxin is an allosteric switch that activates the Fe-S cluster biosynthetic complex (2010) Biochemistry, 49, pp. 9132-9139
  • Ye, H., Rouault, T.A., Human iron-sulfur cluster assembly, cellular iron homeostasis, and disease (2010) Biochemistry, 49, pp. 4945-4956
  • Yoon, H., Golla, R., Lesuisse, E., Pain, J., Donald, J.E., Mutation in the Fe-S scaffold protein Isu bypasses frataxin deletion (2012) Biochem J, 441, pp. 473-480
  • Yoon, T., Cowan, J.A., Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins (2003) J Am Chem Soc, 125, pp. 6078-6084
  • Yoon, T., Cowan, J.A., Frataxin-mediated iron delivery to ferrochelatase in the final step of heme biosynthesis (2004) J Biol Chem, 279, pp. 25943-25946
  • Koutnikova, H., Campuzano, V., Koenig, M., Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase (1998) Hum Mol Genet, 7, pp. 1485-1489
  • Prischi, F., Giannini, C., Adinolfi, S., Pastore, A., The N-terminus of mature human frataxin is intrinsically unfolded (2009) FEBS J, 276, pp. 6669-6676
  • Kondapalli, K.C., Bencze, K.Z., Dizin, E., Cowan, J.A., Stemmler, T.L., NMR assignments of a stable processing intermediate of human frataxin (2010) Biomol NMR Assign, 4, pp. 61-64
  • Dhe-Paganon, S., Shigeta, R., Chi, Y.I., Ristow, M., Shoelson, S.E., Crystal structure of human frataxin (2000) J Biol Chem, 275, pp. 30753-30756
  • Correia, A.R., Pastore, C., Adinolfi, S., Pastore, A., Gomes, C.M., Dynamics, stability and iron-binding activity of frataxin clinical mutants (2008) FEBS J, 275, pp. 3680-3690
  • Musco, G., Stier, G., Kolmerer, B., Adinolfi, S., Martin, S., Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin (2000) Structure, 8, pp. 695-707
  • Bridwell-Rabb, J., Winn, A.M., Barondeau, D.P., Structure-function analysis of Friedreich's ataxia mutants reveals determinants of frataxin binding and activation of the Fe-S assembly complex (2011) Biochemistry, 50, pp. 7265-7274
  • Correia, A.R., Adinolfi, S., Pastore, A., Gomes, C.M., Conformational stability of human frataxin and effect of Friedreich's ataxia-related mutations on protein folding (2006) Biochem J, 398, pp. 605-611
  • Adinolfi, S., Nair, M., Politou, A., Bayer, E., Martin, S., The factors governing the thermal stability of frataxin orthologues: how to increase a protein's stability (2004) Biochemistry, 43, pp. 6511-6518
  • Adinolfi, S., Trifuoggi, M., Politou, A.S., Martin, S., Pastore, A., A structural approach to understanding the iron-binding properties of phylogenetically different frataxins (2002) Hum Mol Genet, 11, pp. 1865-1877
  • Layton, C.J., Hellinga, H.W., Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes (2010) Biochemistry, 49, pp. 10831-10841
  • King, A.C., Woods, M., Liu, W., Lu, Z., Gill, D., High-throughput measurement, correlation analysis, and machine-learning predictions for pH and thermal stabilities of Pfizer-generated antibodies (2011) Protein Sci, 20, pp. 1546-1557
  • Layton, C.J., Hellinga, H.W., Quantitation of protein-protein interactions by thermal stability shift analysis (2011) Protein Sci
  • Correia, A.R., Wang, T., Craig, E.A., Gomes, C.M., Iron-binding activity in yeast frataxin entails a trade off with stability in the alpha1/beta1 acidic ridge region (2010) Biochem J, 426, pp. 197-203
  • Nishimura, C., Uversky, V.N., Fink, A.L., Effect of salts on the stability and folding of staphylococcal nuclease (2001) Biochemistry, 40, pp. 2113-2128
  • Koradi, R., Billeter, M., Wuthrich, K., MOLMOL: a program for display and analysis of macromolecular structures (1996) J Mol Graph, 14, pp. 51-55+29-32
  • Vertrees, J., Barritt, P., Whitten, S., Hilser, V.J., COREX/BEST server: a web browser-based program that calculates regional stability variations within protein structures (2005) Bioinformatics, 21, pp. 3318-3319
  • Wrabl, J.O., Hilser, V.J., Investigating homology between proteins using energetic profiles (2010) PLoS Comput Biol, 6, pp. e1000722
  • Jenik, M., Parra, R.G., Radusky, L.G., Turjanski, A., Wolynes, P.G., Protein frustratometer: a tool to localize energetic frustration in protein molecules (2012) Nucleic Acids Res
  • Clementi, C., Nymeyer, H., Onuchic, J.N., Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins (2000) J Mol Biol, 298, pp. 937-953
  • Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A., THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method (1992) Journal of Computational Chemistry, 13, pp. 1011-1021
  • Swendsen, R.H., Modern methods of analyzing Monte Carlo computer simulations (1993) Physica A: Statistical Mechanics and Its Applications, 194, pp. 53-62
  • Capraro, D.T., Roy, M., Onuchic, J.N., Jennings, P.A., Backtracking on the folding landscape of the beta-trefoil protein interleukin-1beta? (2008) Proc Natl Acad Sci U S A, 105, pp. 14844-14848
  • Gosavi, S., Chavez, L.L., Jennings, P.A., Onuchic, J.N., Topological frustration and the folding of interleukin-1 beta (2006) J Mol Biol, 357, pp. 986-996
  • Hills Jr., R.D., Brooks 3rd, C.L., Subdomain competition, cooperativity, and topological frustration in the folding of CheY (2008) J Mol Biol, 382, pp. 485-495
  • Eftink, M.R., Ramsay, G.D., Studies of the unfolding of an unstable mutant of staphylococcal nuclease: evidence for low temperature unfolding and compactness of the high temperature unfolded state (1997) Proteins, 28, pp. 227-240
  • Oliveberg, M., Wolynes, P.G., The experimental survey of protein-folding energy landscapes (2005) Q Rev Biophys, 38, pp. 245-288
  • Park, C., Marqusee, S., Probing the high energy states in proteins by proteolysis (2004) J Mol Biol, 343, pp. 1467-1476
  • Park, C., Zhou, S., Gilmore, J., Marqusee, S., Energetics-based protein profiling on a proteomic scale: identification of proteins resistant to proteolysis (2007) J Mol Biol, 368, pp. 1426-1437
  • Al-Mahdawi, S., Pook, M., Chamberlain, S., A novel missense mutation (L198R) in the Friedreich's ataxia gene (2000) Hum Mutat, 16, p. 95
  • Lacroix, E., Viguera, A.R., Serrano, L., Elucidating the folding problem of alpha-helices: local motifs, long-range electrostatics, ionic-strength dependence and prediction of NMR parameters (1998) J Mol Biol, 284, pp. 173-191
  • Guerois, R., Nielsen, J.E., Serrano, L., Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations (2002) J Mol Biol, 320, pp. 369-387
  • Forrest, S.M., Knight, M., Delatycki, M.B., Paris, D., Williamson, R., The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene (1998) Neurogenetics, 1, pp. 253-257
  • Roman, E.A., Rosi, P., Gonzalez Lebrero, M.C., Wuilloud, R., Gonzalez Flecha, F.L., Gain of local structure in an amphipathic peptide does not require a specific tertiary framework (2010) Proteins, 78, pp. 2757-2768
  • Fisinger, S., Serrano, L., Lacroix, E., Computational estimation of specific side chain interaction energies in alpha helices (2001) Protein Sci, 10, pp. 809-818
  • Bolen, D.W., Santoro, M.M., Unfolding free energy changes determined by the linear extrapolation method. 2. Incorporation of delta G degrees N-U values in a thermodynamic cycle (1988) Biochemistry, 27, pp. 8069-8074
  • Santoro, M.M., Bolen, D.W., Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants (1988) Biochemistry, 27, pp. 8063-8068
  • Santoro, M.M., Bolen, D.W., A test of the linear extrapolation of unfolding free energy changes over an extended denaturant concentration range (1992) Biochemistry, 31, pp. 4901-4907
  • Uversky, V.N., Use of fast protein size-exclusion liquid chromatography to study the unfolding of proteins which denature through the molten globule (1993) Biochemistry, 32, pp. 13288-13298
  • Marczenko, Z., (1976) Spectrophotometric determination of elements, , E. Horwood
  • Oostenbrink, C., Villa, A., Mark, A.E., van Gunsteren, W.F., A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6 (2004) J Comput Chem, 25, pp. 1656-1676
  • Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P., The missing term in effective pair potentials (2002) J Chem Phys, 91, pp. 6269-6271
  • Noel, J.K., Whitford, P.C., Sanbonmatsu, K.Y., Onuchic, J.N., Nucleic Acids Res (2010), 38, pp. W657-W661; Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E., GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation (2008) Journal of Chemical Theory and Computation, 4, pp. 435-447
  • Cho, S.S., Levy, Y., Wolynes, P.G., P versus Q: structural reaction coordinates capture protein folding on smooth landscapes (2006) Proc Natl Acad Sci U S A, 103, pp. 586-591
  • Garcia de la Torre, J., Huertas, M.L., Carrasco, B., Calculation of hydrodynamic properties of globular proteins from their atomic-level structure (2000) Biophys J, 78, pp. 719-730
  • Myers, J.K., Pace, C.N., Scholtz, J.M., Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding (1995) Protein Sci, 4, pp. 2138-2148

Citas:

---------- APA ----------
Roman, E.A., Faraj, S.E., Gallo, M., Salvay, A.G., Ferreiro, D.U. & Santos, J. (2012) . Protein Stability and Dynamics Modulation: The Case of Human Frataxin. PLoS ONE, 7(9).
http://dx.doi.org/10.1371/journal.pone.0045743
---------- CHICAGO ----------
Roman, E.A., Faraj, S.E., Gallo, M., Salvay, A.G., Ferreiro, D.U., Santos, J. "Protein Stability and Dynamics Modulation: The Case of Human Frataxin" . PLoS ONE 7, no. 9 (2012).
http://dx.doi.org/10.1371/journal.pone.0045743
---------- MLA ----------
Roman, E.A., Faraj, S.E., Gallo, M., Salvay, A.G., Ferreiro, D.U., Santos, J. "Protein Stability and Dynamics Modulation: The Case of Human Frataxin" . PLoS ONE, vol. 7, no. 9, 2012.
http://dx.doi.org/10.1371/journal.pone.0045743
---------- VANCOUVER ----------
Roman, E.A., Faraj, S.E., Gallo, M., Salvay, A.G., Ferreiro, D.U., Santos, J. Protein Stability and Dynamics Modulation: The Case of Human Frataxin. PLoS ONE. 2012;7(9).
http://dx.doi.org/10.1371/journal.pone.0045743