Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD) and partial sequences of the cytochrome oxydase 1 (COI) mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the genetic loss associated with recent anthropogenic fragmentation of the D. elongatus studied range. © 2012 Rosetti, Remis.

Registro:

Documento: Artículo
Título:Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the Grasshopper dichroplus elongatus
Autor:Rosetti, N.; Remis, M.I.
Filiación:Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:cytochrome c oxidase; cytochrome c oxidase 1; mitochondrial DNA; unclassified drug; agroecosystem; Argentina; article; CO1 gene; controlled study; Dichroplus elongatus; DNA determination; gene; gene flow; gene sequence; genetic heterogeneity; genetic variability; genotype environment interaction; geographic distribution; geographic origin; grasshopper; Middle Pleistocene; mitochondrial gene; nonhuman; phylogeny; phylogeography; population distribution; variable number of tandem repeat; Animal Distribution; Animals; Argentina; Bayes Theorem; Cluster Analysis; DNA, Mitochondrial; Electron Transport Complex IV; Female; Gene Flow; Genetic Speciation; Genetic Variation; Grasshoppers; Haplotypes; Insect Proteins; Male; Models, Genetic; Phylogeny; Phylogeography; Sequence Analysis, DNA; Dichroplus elongatus; Poaceae; Schistocerca americana
Año:2012
Volumen:7
Número:7
DOI: http://dx.doi.org/10.1371/journal.pone.0040807
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:cytochrome c oxidase, 72841-18-0, 9001-16-5; DNA, Mitochondrial; Electron Transport Complex IV, 1.9.3.1; Insect Proteins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n7_p_Rosetti.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n7_p_Rosetti

Referencias:

  • Slatkin, M., Gene flow in natural populations (1985) Annual Review Ecology and Systematics, 16, pp. 393-430
  • Galtier, N., Nabholtz, B., Glemin, S., Hurst, G.D.D., Mitochondrial DNA as a marker of molecular diversity: a reappraisal Molecular Ecology (2009), 18, pp. 4541-4550; Tarnita, C.E., Antal, T., Ohtsuky, H., Nowak, M.A., Evolutionary dynamics in set structured populations (2009) Proceedings of the National Academy of Science, 21, pp. 8601-8604
  • Jeffreys, A.J., Wilson, V., Sthein, S.L., Hypervariable "minisatellite" regions in human DNA (1995) Nature, 314, pp. 67-73
  • Nakamura, M., Leppert, P., O'Conell, R., Wolff, T., White, R., Variable number tandem repeat (VNTR) markers for human gene mapping (1988) Science, 235, pp. 1616-1622
  • Heath, D.D., Iwama, G.K., Devlin, R.H., PCR primed with VNTR core sequences yields species-specific patterns and hypervariable probes (1993) Nucleic Acid Research, 21, pp. 5782-5785
  • Zhou, Z., Bebeli, P.J., Somers, D.J., Gustafson, J.P., Direct amplification of minisatellite region DNA with VNTR core sequence in the genus Oryza (1997) Theoretical Journal of Applied Genetics, 95, pp. 942-949
  • Manel, S., Schwartz, M.K., Luikart, G., Taberlet, P., Landscape genetics: combining landscape ecology and population genetics (2003) Trends in Ecology and Evolution, 18, pp. 189-197
  • Holderegger, R., Wagner, H.H., Landscape genetics (2008) Bioscience, 58, pp. 199-207
  • Avise, J.C., (1994) Molecular Markers, Natural History and Evolution, , Chapman & Hall, New York
  • Dawson, M.N., Kennedy, M., Spencer, H.G., Insipient speciation of Catostylus mosaicus (Scyphozoa, Rhizostomeae, Catostylideae) comparative phylogeography and biogeography in south-east Australia (2005) Journal of Biogeography, 32, pp. 515-533
  • Hey, J., Nielse, R., Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis (2004) Genetics, 167, pp. 747-760
  • Beerli, P., Comparison of Bayesian and maximum-likelihood inference of population genetic parameters (2006) Bioinformatics, 22, pp. 341-345
  • Kuhner, M.K., LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters (2006) Bioinformatics, 22, pp. 768-770
  • Schlotterer, C., The evolution of molecular markers-just a matter of fashion? (2004) Nature Review Genetics, 5, pp. 63-69
  • Selkoe, K.A., Toonen, R.J., Microsatellites for Ecologist: A practical guide to using and evaluating microsatellite markers (2006) Ecology Letters, 9, pp. 615-629
  • (1982) The locust and grasshopper agricultural manual, , COPR, Center of Overseas Pest Research. (COPR)
  • Chapco, W., Kelln, R.A., McFadyen, D.A., Intraspecific mitochondrial DNA variation in the migratory grasshopper, Melanoplus sanguinipes (1992) Heredity, 69, pp. 547-557
  • Mariottini, Y., De Wysiecki, M.L., Lange, C.E., Postembryonic development and food consumption of Dichroplus elongatus Giglio-Tos and Dichroplus maculipennis (Blanchard) (Orthoptera: Acrididae. Melanoplinae) under laboratory conditions (2011) Neotropical Entomology, 40 (2), pp. 190-196
  • Cigliano, M.M., Lange, C.E., (1998) Orthoptera: Biodiversidad de Artrópodos Argentinos, pp. 67-83. , Ed. by JJ Morrone and S Cascaron, Editorial Sur, La Plata
  • Torrusio, S., Cigliano, M.M., De Wysiecki, M.L., Grasshopper (Orthoptera: Acridoidea) and plant community relationships in the Argentine Pampas (2002) Journal of Biogeography, 29, pp. 221-229
  • Rosetti, N., Vilardi, J.C., Remis, M.I., Effects of B chromosomes and supernumerary segments on morphometric traits and adult fitness components in the grasshopper Dichroplus elongatus (Orthoptera: Acrididae) (2007) Journal of Evolutionary Biology, 20, pp. 249-259
  • Rosetti, N., Vilardi, J.C., Remis, M.I., Effects of phenotype and B chromosomes on adult survival in the grasshopper Dichroplus elongatus (Orthoptera: Acrididae) (2008) Annals of Entomological Society of America, 101, pp. 922-929
  • Chapuis, M.P., Lecoq, M., Michalakis, Y., Loiseau, A., Sword, G.A., Do outbreaks affect genetic population structure? A wordwide survery in Lacusta migratoria, a pest plagued by microsatellite null alleles (2008) Molecular Ecology, 17, pp. 3640-3653
  • Cabrera, A.L., Willink, A., (1980) Biogeografía de Latino America. Monografías científicas de la OEA, 3
  • Marchant, A.D., Apparent introgression of mitochondrial DNA across a narrow hybrid zone in the Caledia cptiva species-complex (1988) Heredity, 60, pp. 39-46
  • Lizenberger, G., Chapco, W., A molecular phylogeographic perspective on a fifty year old taxonomic issue in a grasshopper systematics (2001) Herediy, 86, pp. 54-59
  • Rousset, F., Genepop'007: a complete reimplementation of the Genepop software for Windows and Linux (2008) Mol. Ecol Resources, 8, pp. 103-106
  • Sequeira, A.S., Confalonieri, V.A., Remis, M.I., Vilardi, J.C., B chromosome and enzyme polymorphism in the grasshopper Dichroplus elongatus: Geographical gradients that are not explained by historical factors (1995) Evolucion Biologica, 89, pp. 281-283
  • Vekemans, X., (2002) AFLPsurv, , version 1.0. Distributed by the author, Laboratorie De Genetique Et Ecologie, Universite Libre De Bruxelles, Belgium
  • Lynch, M., Milligan, B.G., Analysis of population genetic structure with RAPD markers (1994) Molecular Ecology, 3, pp. 91-99
  • Zhyvotovsky, L.A., Estimating population structure in diploids with multilocus dominant DNA markers (1999) Molecular Ecology, 8, pp. 907-913
  • Shannon, C.E., Weaver, W., (1949) The Mathematical Theory of Communication, , University of Illinois Press, Urbana, Illinois
  • Yeh, F.C., Boyle, T., (1999) Popgene, , www.ualberta.ca/-fyeh, version 1.31
  • Excoffier, L., Smouse, P.E., Quattro, J.M., Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to mitochondrial DNA restriction data (1992) Genetics, 131, pp. 479-491
  • Peakall, R., Smouse, P.E., GenAlex V5: Genetic Analysis in Excel (2001) Population Genetic Software for Teaching and Research, , www.anu.edu.auu/BoZo/GenAlEx/, Australian National University, Canberra, Australia
  • Wright, S., The genetical structure of populations (1951) Annals of Eugenetics, 15, pp. 323-354
  • Holsinger, K.E., Lewis, P.O., Dipak, K.D., A Bayesian approach to inferring population structure from dominant markers (2002) Molecular Ecology, 11, pp. 1157-1164
  • Holsinger, K.E., Wallace, L.E., Bayesian approacher for the analysis of population genetic structure: an example from Platanthera lencophaea (Orchidacea) (2004) Molecular Ecology, 13, pp. 887-894
  • Pritchard, J.K., Stephens, M., Donelly, P., Inference of population structure using multilocus genotype data (2000) Genetics, 155, pp. 945-959
  • Corander, J., Marttinen, P., Siren, J., Tang, J., Enhanced Bayesian modeling in BAPS software for learning genetic structure of populations (2008) BMC Bioinformatics, 9, pp. 539-552
  • Deussen, O., Hiller, S., Von Overveld, C., Strothotte, T., Floating points: a method for computing stipple drawings. Computer Graphics Forum (2000) Proceedings of Eurographics, 19, pp. 41-51
  • Nei, M., Genetic distances between populations (1972) American Naturalist, 106, pp. 283-292
  • Black, I.V., (1996) WC FORTRAN Programs for the analysis of RAPD-PCR makers in populations, , Colorado State University, Ft. Collins, CO, USA
  • Felsenstein, J., (1993) PHYLIP (Phylogeny Inference Package), , version 3.5. Distribution by the Author, Department of Genetics, University of Washington, Seattle
  • Smouse, P.E., Peakall, R., Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure (1999) Heredity, 82, pp. 561-573
  • Peakall, R., Smouse, P.E., GenAlex 6: Genetic analysis in Excel. Population genetic software for teaching and research (2006) Molecular Ecology Notes, 6, pp. 288-295
  • Peakall, R., Ruibal, M., Lindenmayer, D.B., Spatial autocorrelation analysis offers new insights into gene flow in the Australian Bush Rat, Rattus fuscipes (2003) Evolution, 57, pp. 1182-1195
  • Mantel, N., The detection of disease and a generalized regression approach (1967) Cancer Research, 27, pp. 209-220
  • Miller, M.P., Alleles in Space: computer software for the joint analysis of interindividual spatial and genetic information (2005) Journal of Heredity, 96, pp. 722-724
  • Jeanmougin, F., Thomson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., Multiple sequence alignment with Clustal X (1998) Trends in Biochemistry Science, 23, pp. 403-405
  • Hall, T.A., Bioedit: a user friendly biological sequence alignment editing and analysis program for Windows 95-98 NT (1999) Nucleic Acid Symposium Series, 41, pp. 95-98
  • Nei, M., (1987) Molecular Evolutionary Genetics, , Columbia University Press, New york USA
  • Nei, M., Jin, L., Variance of the average numbers of nucleotide substitutions within and between populations (1989) Molecular Biology and Evolution, 6, pp. 290-300
  • Excoffier, L., Lava, I., Schneider, S., Arlequin version 3.0: An integrated software package for population genetics data analysis (2009) Evolutionary Bioinformatics Online, 1, pp. 47-50
  • Crandall, K.A., Templeton, E.R., Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction (1994) Genetics, 34, pp. 959-969
  • Bandelt, H.J., Forster, P., Rohl, A., Median-Joining network for inferring intraspecific phylogenies (1999) Molecular Biology and Evolution, 16, pp. 37-48
  • Rozas, J., Rozas, R., DnaSP version 5: An integrated program for molecular population genetics and molecular evolution analysis (1999) Bioinformatics, 15, pp. 174-175
  • Harpending, H.C., Signature of ancient population-growth in a low-resolution mitochondrial DNA mismatch distribution (1994) Human Biology, 66, pp. 591-600
  • Tajima, F., Statistical method for testing the neutral mutation hypothesis by DNA polymorphism (1989) Genetics, 123, pp. 585-595
  • Fu, Y.X., Statistical test of neutrality of mutations against population growth, hitchhicking and background selection (1997) Genetics, 147, pp. 915-925
  • Drummond, A.J., Raumbaut, A., BEAST: Bayesian evolutionary analysis by sampling trees (2007) BMC Evolutionary Biology, 7, p. 214
  • Rambaut, A., Drummond, A.J., (2007) Tracer, , http//beast.edu.ac.uk/Tracer, v 1.4.8. Institute of Evolutionary Biology, University of Edinburg, Available from, Accessed 2008 Feb 9
  • Gaunt, M., Miles, M., An insect molecular clock dates the origin of insects and accords with paleontological and biogeographic landmarks (2002) Molecular Biology and Evolution, 19, pp. 748-761
  • Ortego, J., Bonal, R., Cordero, P.J., Aparicio, J.M., Phylogeography of the Iberian populations of Mioscirtus wagneri (Orthoptera: Acrididae), a specialized grasshopper inhabiting highly fragmented hypersaline environments (2009) Biological Journal of the Linnean Society, 97, pp. 623-633
  • Ortego, J., Aguirre, M.P., Cordero, P.J., Population genetics of Mioscirtus wagneri, a grasshopper showing a highly fragmented distribution (2010) Molecular Ecology, 19, pp. 472-483
  • Li, T., Zhang, M., Qu, Y., Ren, Z., Zhang, J., Population genetic structure and phylogeographical pattern of rice grasshopper, Oxya hyla intricata, across southeast Asia (2011) Genetica, 139, pp. 511-524
  • Epperson, B.K., Spatial autocorrelation of genotypes under directional selection (1990) Genetics, 124, pp. 757-771
  • Taylor, P.D., Fahrig, L., Henein, K., Merriam, G., Connectivity is a vital element of landscape structure (1993) Oikos, 68, pp. 571-573
  • Berggren, A., Birath, B., Kindvall, O., Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel's bush cricket (Metrioptera roeseli) (2002) Conservation Biology, 16, pp. 1562-1569
  • Saarinen, K., Valtonen, A., Jantunen, J., Saarnio, S., Butterflies and diurnal moth along road verges: does road type affect diversity and abundance? (2005) Biological Conservation, 123, pp. 403-412
  • Posada, D., Crandall, K.A., Intraspecific gene genealogies: trees grafting into networks (2001) TREE, 16, pp. 37-45
  • Grant, W.S., Bowen, B.W., Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation (1998) Journal of Heredity, 89, pp. 415-426
  • Voight, B.F., Adams, A.M., Frisse, L.A., Quian, Y., Hudson, R.R., Interrogating multiple aspects of variation in a full resequencing data set to infer human population size changes (2005) Proceeding of National Academy of Science USA, 12, pp. 18508-18513
  • Webb, T., Bartlein, P.J., Global changes during the last 3 million years: climatic controls and biotic responses (1992) Annual Review of Ecology and Systematics, 23, pp. 141-173
  • Knowles, L.L., Carstens, B.C., Keat, M.L., Coupled genetic and ecological niche-models to examine how past population distributions contribute to divergence (2007) Current Biology, 17, pp. 1-7
  • Carlini, A.A., Zurita, A.E., Gasparini, G., Noriega, J.I., Los mamíferos del pleistoceno de la Mesopotamia argentina y su relacion con los del Centro Norte de la Argentina, Paraguay y Sur de Bolivia y los del Sur de Brasil y Oeste de Uruguay: paleobiogeografia y paleoambientes (2004) Micelanea, 12, pp. 83-90
  • Iriondo, M.H., The Quaternary of northeastern Argentina (1984) Quaternary of South America and Antarctic Peninsula, 2, pp. 51-78. , Rabassa J. (ed)
  • Iriondo, M.H., Krohling, D., From Buenos Aires to Santa Fe: Darwins observations and modern knowledge (2009) Revista De La Asociacion Geologica Argentina, 64 (1), pp. 109-123
  • Hewitt, G.M., The genetic legacy of the Quaternary ice age (2000) Nature, 405, pp. 907-913
  • Boulet, M., Couturier, S., Cote, S.D., Otto, R., Bernatches, L., Integrative use of spatial, genetic and demographic analyses for investigating genetic connectivity between migratory, montane and sedentary caribou herds (2007) Molecular Ecology, 16, pp. 4223-4240
  • Neaves, L.E., Zenger, K.R., Prince, R.I., Eldridges, M.D.B., Cooper, D.W., Landscape discontinuities influence gene flow and genetic structure in a large, vagile Australian mammal, Macropus fuliginosus (2009) Molecular Ecology, 18, pp. 3363-3378
  • Cano, J.M., Makinen, H.S., Merila, J., Genetic evidence for male-biased dispersal in the three-spined stickleback (Gasterosteus aculeatus) (2008) Molecular Ecology, 17, pp. 3234-3242
  • Rosetti, N., (2011) Analisis genetico-poblacionales en la tucura Dichroplus elongatus a traves de estudios cromosomicos, morfometricos y moleculares, , PhD Thesis, Buenos Aires University, Buenos Aires, Argentina

Citas:

---------- APA ----------
Rosetti, N. & Remis, M.I. (2012) . Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the Grasshopper dichroplus elongatus. PLoS ONE, 7(7).
http://dx.doi.org/10.1371/journal.pone.0040807
---------- CHICAGO ----------
Rosetti, N., Remis, M.I. "Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the Grasshopper dichroplus elongatus" . PLoS ONE 7, no. 7 (2012).
http://dx.doi.org/10.1371/journal.pone.0040807
---------- MLA ----------
Rosetti, N., Remis, M.I. "Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the Grasshopper dichroplus elongatus" . PLoS ONE, vol. 7, no. 7, 2012.
http://dx.doi.org/10.1371/journal.pone.0040807
---------- VANCOUVER ----------
Rosetti, N., Remis, M.I. Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the Grasshopper dichroplus elongatus. PLoS ONE. 2012;7(7).
http://dx.doi.org/10.1371/journal.pone.0040807