Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

CO recombination kinetics has been investigated in the type II truncated hemoglobin from Thermobifida fusca (Tf-trHb) over more than 10 time decades (from 1 ps to ~100 ms) by combining femtosecond transient absorption, nanosecond laser flash photolysis and optoacoustic spectroscopy. Photolysis is followed by a rapid geminate recombination with a time constant of ~2 ns representing almost 60% of the overall reaction. An additional, small amplitude geminate recombination was identified at ~100 ns. Finally, CO pressure dependent measurements brought out the presence of two transient species in the second order rebinding phase, with time constants ranging from ~3 to ~100 ms. The available experimental evidence suggests that the two transients are due to the presence of two conformations which do not interconvert within the time frame of the experiment. Computational studies revealed that the plasticity of protein structure is able to define a branched pathway connecting the ligand binding site and the solvent. This allowed to build a kinetic model capable of describing the complete time course of the CO rebinding kinetics to Tf-trHb. © 2012 Marcelli et al.

Registro:

Documento: Artículo
Título:Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca
Autor:Marcelli, A.; Abbruzzetti, S.; Bustamante, J.P.; Feis, A.; Bonamore, A.; Boffi, A.; Gellini, C.; Salvi, P.R.; Estrin, D.A.; Bruno, S.; Viappiani, C.; Foggi, P.
Filiación:LENS, European Laboratory for Non-linear Spectroscopy, Florence, Italy
Department of Physics, University of Parma, Parma, Italy
Departamento de Química Inorgánica, Analitica y Quimica Fisica/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428EHA), Buenos Aires, Argentina
Department of Chemistry Ugo Schiff, University of Florence, Florence, Italy
Istituto Pasteur, Fondazione Cenci Bolognetti, Department of Biochemical Sciences, University of Rome La Sapienza, Rome, Italy
Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
Department of Chemistry, University of Perugia, Italy
INO-CNR, Florence, Italy
Palabras clave:carbon monoxide; truncated hemoglobin; article; bacterium; binding affinity; binding kinetics; binding site; complex formation; controlled study; enthalpy; entropy; ligand binding; molecular dynamics; molecular recognition; nonhuman; photoacoustic spectroscopy; photolysis; protein binding; quantum yield; steady state; temperature sensitivity; Thermobifida fusca; Actinomycetales; Carbon Monoxide; Kinetics; Ligands; Photolysis; Protein Binding; Time Factors; Truncated Hemoglobins; Thermobifida fusca
Año:2012
Volumen:7
Número:7
DOI: http://dx.doi.org/10.1371/journal.pone.0039884
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:carbon monoxide, 630-08-0; Carbon Monoxide, 630-08-0; Ligands; Truncated Hemoglobins
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n7_p_Marcelli.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n7_p_Marcelli

Referencias:

  • Martin, J.L., Vos, M.H., Femtosecond biology (1992) Annu Rev Bioph Biomol Struct, 21, pp. 199-222
  • Vos, M.H., Martin, J.L., Femtosecond processes in protein (1999) Biochim Biophys Acta, 1411, pp. 1-20
  • Vos, M.H., Ultrafast dynamics of ligands within heme proteins (2008) Biochim Biophys Acta, 1777, pp. 15-31
  • Ansari, A., Jones, C.M., Henry, E.R., Hofrichter, J., Eaton, W.A., Conformational relaxation and ligand binding in myoglobin (1994) Biochemistry, 33, pp. 5128-5145
  • Olson, J.S., Phillips Jr., G.N., Kinetics pathway and barriers for ligand binding myoglobin (2008) J. Biol. Chem, 271, pp. 17593-17596
  • Dunietz, B.D., Dreuw, A., Head-Gordon, M., Initial steps of the photodissociation of the CO ligated heme group (2003) J Phys Chem B, 107, pp. 5623-5629
  • Ye, X., Demidov, A., Champion, P.M., Measurements of the Photodissociation Quantum Yields of MbNO and MbO2 and the Vibrational Relaxation of the Six-Coordinate Heme Species (2002) J. Am. Chem. Soc, 124, pp. 5914-5924
  • Petrich, J.W., Poyart, C., Martin, J.L., Photophysics and Reactivity of Heme Proteins: A Femtosecond Absorption Study of Hemoglobin, Myoglobin, and Protoheme (1988) Biochemistry, 27, pp. 4049-4060
  • Franzen, S., Kiger, L., Poyart, C., Martin, J.L., Heme photolysis occurs by ultrafast excited state metal-to-ring charge transfer (2001) Biophys J, 80, pp. 2372-2385
  • Schotte, F., Lim, M., Jackson, T.A., Smirnov, A.V., Soman, J., Watching a protein as it functions with 150-ps time-resolved X-ray crystallography (2003) Science, 300, pp. 1944-1947
  • Lim, M.H., Jackson, T.A., Anfinrud, P.A., Modulating carbon monoxide binding affinity and kinetics in myoglobin: the roles of the distal histidine and the heme pocket docking site (1997) J Biol Inorg Chem, 2, pp. 531-536
  • Jones, C.M., Ansari, A., Henry, E.R., Christoph, G.W., Hofrichter, J., Speed of intersubunit communication in proteins (1992) Biochemistry, 31, pp. 6692-6702
  • Hagen, S.J., Hofrichter, J., Eaton, W.A., Protein reaction kinetics in a room-temperature glass (1995) Science, 269, pp. 959-962
  • Vinogradov, S.N., Moens, L., Diversity of globin function: enzymatic, transport, storage, and sensing (2008) J Biol Chem, 283, pp. 8773-8777
  • Wittenberg, J.B., Bolognesi, M., Wittenberg, B.A., Guertin, M., Truncated Hemoglobins: A New Family of Hemoglobins Widely Distributed in Bacteria, Unicellular Eukaryotes, and Plants (2002) J Biol Chem, 277, pp. 871-874
  • Frey, A.D., Kallio, P.T., Nitric oxide detoxification - a new era for bacterial globins in biotechnology? (2005) Trends Biotechnol, 23, pp. 69-73
  • Nicoletti, F.P., Comandini, A., Bonamore, A., Boechi, L., Boubeta, F.M., Sulfide binding properties of truncated hemoglobins (2010) Biochemistry, 49, pp. 2269-2278
  • Ouellet, H., Ranguelova, K., Labarre, M., Wittenberg, J.B., Wittenberg, B.A., Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals (2007) J Biol Chem, 282, pp. 7491-7503
  • Crespo, A., Martí, M.A., Kalko, S.G., Morreale, A., Orozco, M., Theoretical Study of the Truncated Hemoglobin HbN: Exploring the Molecular Basis of the NO Detoxification Mechanism (2005) J Am Chem Soc, 127, pp. 4433-4444
  • Bonamore, A., Ilari, A., Giangiacomo, L., Bellelli, A., Morea, V., A novel thermostable hemoglobin from the Actinobacterium of Thermobifida fusca (2005) FEBS J, 272, pp. 4189-4201
  • Nicoletti, F.P., Droghetti, E., Boechi, L., Bonamore, A., Sciamanna, N., Fluoride as a probe for H-bonding interactions in the active site of heme proteins: the case of Thermobifida fusca hemoglobin (2011) J. Am. Chem. Soc, 133, pp. 20970-20980
  • Droghetti, E., Nicoletti, F.P., Bonamore, A., Boechi, L., Mañez, P.A., Heme pocket structural properties of a bacterial truncated hemoglobin from Thermobifida fusca (2010) Biochemistry, 49, pp. 10394-10402
  • Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y.H.B., Reactions of Mycobacterium tuberculosis Truncated Hemoglobin O with Ligands Reveal a Novel Ligand-Inclusive Hydrogen Bond Network (2003) Biochemistry, 42, pp. 5764-5774
  • Guallar, V., Lu, C., Borrelli, K., Egawa, T., Yeh, S.R., Ligand migration in the truncated hemoglobin-II from Micobacterium tubercolosis (2009) J Biol Chem, 284, pp. 3106-3116
  • Boechi, L., Martí, M.A., Milani, M., Bolognesi, M., Luque, F.J., Structural determinants of ligand migration in Mycobacterium tuberculosis truncated hemoglobin O (2008) Proteins, 73, pp. 372-379
  • Feis, A., Lapini, A., Catacchio, B., Brogioni, S., Foggi, P., Unusually Strong H-Bonding to the Heme Ligand and Fast GeminateRecombination Dynamics of the Carbon Monoxide Complex of Bacillus subtilis Truncated Hemoglobin (2008) Biochemistry, 47, pp. 902-910
  • Boechi, L., Mañez, P.A., Luque, F.J., Marcelo, A., Martí, M.A., Unraveling the molecular basis for ligand binding in truncated hemoglobins: The trHbO Bacillus subtilis case (2010) Proteins, 78, pp. 962-970
  • Jasaitis, A., Ouellet, H., Lambry, J.C., Martin, J.L., Friedman, J.M., Ultrafast heme-ligand recombination in truncated hemoglobin HbO from Mycobacterium tubercolosis (2012) Chem Phys, 396, pp. 10-16
  • Steinbach, P.J., Inferring Lifetime Distributions from Kinetics by Maximizing Entropy Using a Bootstrapped Model (2002) J Chem Inf Comput Sci, 42, pp. 1476-1478
  • Steinbach, P.J., Ionescu, R., Matthews, C.R., Analysis of Kinetics Using a Hybrid Maximum-Entropy/Nonlinear-Least-Squares Method: Application to Protein Folding (2002) Biophys J, 82, pp. 2244-2255
  • Ilari, A., Kjelgaard, P., von Wachenfeldt, C., Catacchio, B., Chiancone, E., Crystal structure and ligand binding properties of the truncated hemoglobin from Geobacillus stearothermophilus (2007) Arch Biochem Biophys, 457, pp. 85-94
  • Carver, T.E., Rohlfs, R.J., Olson, J.S., Gibson, Q.H., Blackmore, R.S., Analysis of the Kinetic Barriers for Ligand Binding to Sperm Whale Myoglobin Using Site-directed Mutagenesis and Laser Photolysis Techniques (1990) J Biol Chem, 265, pp. 20007-20020
  • Braslavsky, S.E., Heibel, G.E., Time-resolved photothermal and photoacoustics methods applied to photoinduced processes in solution (1992) Chem Rev, 92, pp. 1381-1410
  • Gensch, T., Viappiani, C., Time-resolved photothermal methods: accessing time-resolved thermodynamics of photoinduced processes in chemistry and biology (2003) Photochem Photobiol Sci, 2, pp. 699-721
  • Dixon, D.W., Kirmaier, C., Holten, D., Picosecond photodissociation of six-coordinate iron(II) porphyrins (1985) J. Am. Chem. Soc, 107, pp. 808-813
  • Franzen, S., Bohn, B., Poyart, C., Martin, J.L., Evidence for sub-picosecond heme doming in hemoglobin and myoglobin: a time-resolved resonance Raman comparison of carbonmonoxy and deoxy species (1995) Biochemistry, 34, pp. 1224-1237
  • Kholodenko, Y., Volk, M., Gooding, E., Hochstrasser, R.M., Energy dissipation and relaxation processes in deoxy myoglobin after photoexcitation in the Soret region (2000) Chem Phys, 259, pp. 71-87
  • Lim, M.H., Jackson, T.A., Anfinrud, P.A., Femtosecond Near-IR Absorbance Study of Photoexcited Myoglobin: Dynamics of Electronic and Thermal Relaxation (1996) J Phys Chem, 100, pp. 12043-12051
  • Martin, J.L., Migus, A., Poyart, C., Lecarpentier, Y., Astier, R., Femtosecond photolysis of CO-ligated photoheme and hemoproteins: appearence of 5c- species with a 350-fs time constant (1983) Proc Natl Acad Sci, 80, pp. 173-177
  • Miller, R.J., Vibrational Energy Relaxation and Structural Dynamics of Heme Proteins (1991) Annu Rev Phys Chem, 42, pp. 581-614
  • Mizutani, Y., Kitagawa, T., Direct observation of cooling of heme upon photodissociation of carbonmonoxy myoglobin (1997) Science, 278, pp. 443-446
  • Rodriguez, J., Kilmaier, C., Holten, D., Optical properties of metalloporphyrin excited states (1989) J. Am. Chem. Soc, 111, pp. 6500-6506
  • Rodriguez, J., Kilmaier, C., Holten, D., Time-resolved and static optical properties of vibrationally excited porphyrins (1991) J Chem Phys, 94, pp. 6020-6029
  • Shank, C.V., Ippen, E.P., Time-resolved spectroscopy of hemoglobin and its complexes with subpicosecond optical pulses (1976) Science, 193, pp. 50-51
  • Ye, X., Demidov, A., Rosca, F., Wang, W., Kumar, A., Investigations of Heme Protein Absorption Line Shapes, Vibrational Relaxation, and Resonance Raman Scattering on Ultrafast Time Scales (2003) J Phys Chem A, 107, pp. 8156-8165
  • Grogan, G.G., Bag, N., Traylor, T.G., Madge, D., Picosecond reaction of picket fence heme with O2 and CO: Geminate recombination in solvent cage (1994) J Phys Chem, 98, pp. 13791-13796
  • Silkstone, G., Jasaitis, A., Vos, M.H., Wilson, M.T., Geminate carbon monoxide rebinding to a c-type heam (2005) Dalton T, 21, pp. 3489-3494
  • Benabbas, A., Ye, X., Kubo, M., Zhang, Z., Maes, E.M., Ultrafast Dynamics of Diatomic Ligand Binding to Nitrophorin 4 (2010) J Am Chem Soc, 132, pp. 2811-2820
  • Kumazaki, S., Nakajima, H., Sakaguchi, T., Nakagawa, E., Shinohara, H., Dissociation and Recombination between Ligands and Heme in a CO-sensing Transcriptional Activator CooA (2000) J Biol Chem, 275, pp. 38378-38383
  • Cohen, J., Arkhipov, A., Braun, R., Schulten, K., Imaging the migration pathways for O2, CO, NO, and Xe inside myoglobin (2006) Biophys J, 91, pp. 1844-1857
  • Abbruzzetti, S., Faggiano, S., Bruno, S., Spyrakis, F., Mozzarelli, A., Ligand migration through the internal hydrophobic cavities in human neuroglobin (2009) Proc Natl Acad Sci USA, 106, pp. 18984-18989
  • Bruno, S., Faggiano, S., Spyrakis, F., Mozzarelli, A., Abbruzzetti, S., The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal His E7 and internal hydrophobic cavities (2007) J Am Chem Soc, 129, pp. 2880-2889
  • Sottini, S., Abbruzzetti, S., Viappiani, C., Ronda, L., Mozzarelli, A., Determination of microscopic rate constants for CO binding and migration in myoglobin encapsulated in silica gels (2005) J Phys Chem B, 109, pp. 19523-19528
  • Kriegl, J.M., Bhattacharyya, A.J., Nienhaus, K., Deng, P., Minkow, O., Ligand binding and protein dynamics in neuroglobin (2002) Proc. Natl. Acad. Sci. U.S.A, 99, pp. 7992-7997
  • Angeloni, L., Feis, A., Protein relaxation in the photodissociation of myoglobin-CO complex (2003) Photoch Photobio Sci, 2, pp. 730-740
  • Norris, C.L., Peters, K.S., A photoacoustic calorimetry study of horse carboxymyoglobin on the 10-nanosecond time scale (1993) Biophys J, 65, pp. 1660-1665
  • Belogortseva, N., Rubio, M., Terrell, W., Mikšovskà, J., The contribution of heme propionate groups to the conformational dynamics associated with CO photodissociation from horse heart myoglobin (2007) J Inorg Biochem, 101, pp. 977-986
  • Sakakura, M., Yamaguchi, S., Hirota, N., Terazima, M., Dynamics of Structure and Energy of Horse Carboxymyoglobin after Photodissociation of Carbon Monoxide (2001) J Am Chem Soc, 123, pp. 4286-4294
  • Sakakura, M., Morishima, I., Terazima, M., The Structural Dynamics and Ligand Releasing Process after the Photodissociation of Sperm Whale Carboxymyoglobin (2001) J Phys Chem B, 105, pp. 10424-11043
  • Projahn, H.D., van Eldik, R., Volume Profile Analysis of the Formation and Dissociation of Carboxymyoglobin. Comparison with the Corresponding Oxymyoglobin System (1991) Inorg Chem, 30, pp. 3288-3293
  • Mikšovskà, J., Day, J.H., Larsen, R.W., Volume and enthalpy profiles of CO rebinding to horse heart myoglobin (2003) J Biol Inorg Chem, 8, pp. 621-625
  • Goldbeck, R.A., Bhaskaran, S., Ortega, C., Mendoza, J.L., Olson, J.S., Water and ligand entry in myoglobin: Assessing the speed and extent of heme pocket hydration after CO photodissociation (2006) Proc Natl Acad Sci USA, 103, pp. 1254-1259
  • Larsen, R.W., Mikšovskà, J., Time resolved thermodynamics of ligand binding to heme proteins (2007) Coord Chem Rev, 251, pp. 1101-1127
  • Vetromile, C.M., Mikšovskà, J., Larsen, R.W., Time resolved thermodynamics associated with ligand photorelease in heme peroxidases and globins: Open access channels versus gated ligand release (2011) Biochim Biophys Acta, 1814, pp. 1065-1076
  • Marcelli, A., Foggi, P., Moroni, L., Gellini, C., Salvi, P.R., Excited-State Absorption and Ultrafast Relaxation Dynamics of Porphyrin, Diprotonated Porphyrin, and Tetraoxaporphyrin Dication (2008) J Phys Chem A, 112, pp. 1864-1872
  • Foggi, P., Neuwahl, F.V.R., Moroni, L., Salvi, P.R., S1 → Sn and S2 → Sn Absorption of Azulene: Femtosecond Transient Spectra and Excited State Calculations (2003) J Phys Chem A, 107, pp. 1689-1696
  • Henry, E.R., Hofrichter, J., Singular value decomposition: Application to analysis of experimental data (1992) Method Enzymol, 210, pp. 129-192
  • Abbruzzetti, S., Bruno, S., Faggiano, S., Grandi, E., Mozzarelli, Monitoring haem proteins at work with nanosecond laser flash photolysis (2006) Photoch Photobio Sci, 5, pp. 1109-1120
  • Abbruzzetti, S., Sottini, S., Viappiani, C., Corrie, J.E.T., Kinetics of proton release after flash photolysis of 1-(2-nitrophenyl)ethyl sulfate (caged sulfate) in aqueous solutions (2005) J Am Chem Soc, 127, pp. 9865-9874
  • Sottini, S., Abbruzzetti, S., Viappiani, C., Bettati, S., Ronda, L., Evidence for Two Geminate Rebinding States following Laser Photolysis of R State Hemoglobin Encapsulated in Wet Silica Gels (2005) J Phys Chem B, 109, pp. 11411-11413
  • Small, J.R., (1992) Numerical Computer Methods, 210, pp. 505-521. , San Diego: Academic Press, Inc
  • Small, J.R., Libertini, L.J., Small, E.W., Analysis of photoacoustic waveforms using the nonlinear least squares method (1992) Biophys Chem, 42, pp. 24-48
  • Rudzki, J.E., Goodman, J.L., Peters, K.S., Simultaneous determination of photoreaction dynamics and energetics using pulsed, time-resolved photoacoustic calorimetry (1985) J Am Chem Soc, 107, pp. 7849-7854
  • Callis, J.B., Parson, W.W., Gouterman, M., Fast Changes of Enthalpy and Volume of Flash Excitation of Chromatium Chromatophores (1972) Biochim Biophys Acta, 267, pp. 348-362
  • Peters, K.S., Snyder, G.J., Time-Resolved Photoacoustic Calorimetry: Probing the Energetics and Dynamics of Fast Chemical and Biochemical Reactions (1988) Science, 241, pp. 1053-1057
  • Feis, A., Angeloni, L., Photodissociation of the CO Complex of Horseradish Peroxidase Studied by Laser-Induced Optoacoustic Spectroscopy (2001) J Phys Chem B, 105, pp. 2638-2643
  • Case, D.A., Cheatham, T.E., Darden, T., Gohlke, H., Luo, R., The Amber biomolecular simulation programs (2005) J. Comput Chem, 26, pp. 1668-1688
  • Wang, J., Cieplak, P., Kollman, P.A., How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? (2000) J Comput Chem, 21, pp. 1049-1074
  • Martí, M.A., Capece, L., Bidon-Chanal, A., Crespo, A., Guallar, V., Nitric oxide reactivity with globins as investigated through computer simulation (2008) Method Enzymol, 437, pp. 477-498
  • Martí, M.A., Crespo, A., Capece, L., Boechi, L., Bikiel, D.E., Dioxygen affinity in heme proteins investigated by computer simulation (2006) J Inorg Biochem, 100, pp. 761-770
  • Bikiel, D.E., Boechi, L., Capece, L., Crespo, A., DeBiase, P.M., Modeling heme proteins using atomistic simulations (2006) Phys Chem Chem Phys, 8, pp. 5611-5628
  • Forti, F., Boechi, L., Estrin, D.A., Martí, M.A., Comparing and combining implicit ligand sampling with multiple steered molecular dynamics to study ligand migration processes in heme proteins (2011) J Comput Chem, 32, pp. 2219-2231

Citas:

---------- APA ----------
Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., Gellini, C.,..., Foggi, P. (2012) . Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca. PLoS ONE, 7(7).
http://dx.doi.org/10.1371/journal.pone.0039884
---------- CHICAGO ----------
Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., et al. "Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca" . PLoS ONE 7, no. 7 (2012).
http://dx.doi.org/10.1371/journal.pone.0039884
---------- MLA ----------
Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., et al. "Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca" . PLoS ONE, vol. 7, no. 7, 2012.
http://dx.doi.org/10.1371/journal.pone.0039884
---------- VANCOUVER ----------
Marcelli, A., Abbruzzetti, S., Bustamante, J.P., Feis, A., Bonamore, A., Boffi, A., et al. Following ligand migration pathways from picoseconds to milliseconds in type ii truncated hemoglobin from thermobifida fusca. PLoS ONE. 2012;7(7).
http://dx.doi.org/10.1371/journal.pone.0039884