Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The p53 tumor suppressor protein is an important regulator of cell proliferation and apoptosis. p53 can be found in the nucleus and in the cytosol, and the subcellular location is key to control p53 function. In this work, we found that a widely used monoclonal antibody against p53, termed Pab 1801 (Pan antibody 1801) yields a remarkable punctate signal in the cytoplasm of several cell lines of human origin. Surprisingly, these puncta were also observed in two independent p53-null cell lines. Moreover, the foci stained with the Pab 1801 were present in rat cells, although Pab 1801 recognizes an epitope that is not conserved in rodent p53. In contrast, the Pab 1801 nuclear staining corresponded to genuine p53, as it was upregulated by p53-stimulating drugs and absent in p53-null cells. We identified the Pab 1801 cytoplasmic puncta as P Bodies (PBs), which are involved in mRNA regulation. We found that, in several cell lines, including U2OS, WI38, SK-N-SH and HCT116, the Pab 1801 puncta strictly colocalize with PBs identified with specific antibodies against the PB components Hedls, Dcp1a, Xrn1 or Rck/p54. PBs are highly dynamic and accordingly, the Pab 1801 puncta vanished when PBs dissolved upon treatment with cycloheximide, a drug that causes polysome stabilization and PB disruption. In addition, the knockdown of specific PB components that affect PB integrity simultaneously caused PB dissolution and the disappearance of the Pab 1801 puncta. Our results reveal a strong cross-reactivity of the Pab 1801 with unknown PB component(s). This was observed upon distinct immunostaining protocols, thus meaning a major limitation on the use of this antibody for p53 imaging in the cytoplasm of most cell types of human or rodent origin. © 2012 Thomas et al.

Registro:

Documento: Artículo
Título:A monoclonal antibody against p53 cross-reacts with processing bodies
Autor:Thomas, M.G.; Luchelli, L.; Pascual, M.; Gottifredi, V.; Boccaccio, G.L.
Filiación:Instituto Leloir Av. Patricias Argentinas Buenos Aires, Argentina
IIBBA-CONICET, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Argentina
Palabras clave:cell marker; cycloheximide; decapping enzyme 1a; decapping enzyme 1b; decapping enzyme 2; epitope; exoribonuclease; exoribonuclease 1; messenger RNA; monoclonal antibody; pantropic antibody 1801; protein 4ET; protein Hedls; protein p53; protein p54; small interfering RNA; unclassified drug; epitope; protein p53; TP53 protein, human; animal cell; animal tissue; article; cell component; cell disruption; cell line; cell stimulation; cell strain HCT116; cellular distribution; concentration (parameters); controlled study; cross reaction; dissolution; Drosophila; embryo; fetus; gene control; gene silencing; genetic transfection; human; human cell; image analysis; immunohistochemistry; intracellular signaling; nonhuman; polysome; processing body; protein analysis; protein localization; rat; upregulation; animal; antibody specificity; chemistry; cytoplasm; immunology; metabolism; Sprague Dawley rat; tumor cell line; Rattus; Rodentia; Animals; Antibodies, Monoclonal, Murine-Derived; Antibody Specificity; Cell Line, Tumor; Cytoplasm; Epitopes; Humans; Immunohistochemistry; Rats; Rats, Sprague-Dawley; Tumor Suppressor Protein p53
Año:2012
Volumen:7
Número:5
DOI: http://dx.doi.org/10.1371/journal.pone.0036447
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:cycloheximide, 642-81-9, 66-81-9; exoribonuclease, 37288-24-7; Antibodies, Monoclonal, Murine-Derived; Epitopes; TP53 protein, human; Tumor Suppressor Protein p53
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n5_p_Thomas.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n5_p_Thomas

Referencias:

  • Brady, C.A., Attardi, L.D., p53 at a glance (2010) J Cell Sci, 123, pp. 2527-2532
  • Green, D.R., Kroemer, G., Cytoplasmic functions of the tumour suppressor p53 (2009) Nature, 458, pp. 1127-1130
  • Wang, F., Fu, X., Chen, X., Zhao, Y., Mitochondrial uncoupling inhibits p53 mitochondrial translocation in TPA-challenged skin epidermal JB6 cells (2010) PLoS One, 5, pp. e13459
  • Moll, U.M., Riou, G., Levine, A.J., Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion (1992) Proc Natl Acad Sci U S A, 89, pp. 7262-7266
  • Moll, U.M., LaQuaglia, M., Benard, J., Riou, G., Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors (1995) Proc Natl Acad Sci U S A, 92, pp. 4407-4411
  • Moll, U.M., Ostermeyer, A.G., Haladay, R., Winkfield, B., Frazier, M., Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage (1996) Mol Cell Biol, 16, pp. 1126-1137
  • Ostermeyer, A.G., Runko, E., Winkfield, B., Ahn, B., Moll, U.M., Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide (1996) Proc Natl Acad Sci U S A, 93, pp. 15190-15194
  • Nikolaev, A.Y., Li, M., Puskas, N., Qin, J., Gu, W., Parc: a cytoplasmic anchor for p53 (2003) Cell, 112, pp. 29-40
  • Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A.M., Pluquet, O., Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3beta (2004) Genes Dev, 18, pp. 261-277
  • Becker, K., Marchenko, N.D., Maurice, M., Moll, U.M., Hyperubiquitylation of wild-type p53 contributes to cytoplasmic sequestration in neuroblastoma (2007) Cell Death Differ, 14, pp. 1350-1360
  • Thomas, M.G., Loschi, M., Desbats, M.A., Boccaccio, G.L., RNA granules: the good, the bad and the ugly (2011) Cell Signal, 23, pp. 324-334
  • Kaul, S.C., Aida, S., Yaguchi, T., Kaur, K., Wadhwa, R., Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides (2005) J Biol Chem, 280, pp. 39373-39379
  • Kruse, J.P., Gu, W., MSL2 Promotes Mdm2-independent Cytoplasmic Localization of p53 (2009) J Biol Chem, 284, pp. 3250-3263
  • Mallette, F.A., Gaumont-Leclerc, M.F., Ferbeyre, G., The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence (2007) Genes Dev, 21, pp. 43-48
  • Ashcroft, M., Taya, Y., Vousden, K.H., Stress signals utilize multiple pathways to stabilize p53 (2000) Mol Cell Biol, 20, pp. 3224-3233
  • Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Requirement for p53 and p21 to sustain G2 arrest after DNA damage (1998) Science, 282, pp. 1497-1501
  • Lin, D.L., Chang, C., p53 is a mediator for radiation-repressed human TR2 orphan receptor expression in MCF-7 cells, a new pathway from tumor suppressor to member of the steroid receptor superfamily (1996) J Biol Chem, 271, pp. 14649-14652
  • Banks, L., Matlashewski, G., Crawford, L., Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression (1986) Eur J Biochem, 159, pp. 529-534
  • Legros, Y., Lafon, C., Soussi, T., Linear antigenic sites defined by the B-cell response to human p53 are localized predominantly in the amino and carboxy-termini of the protein (1994) Oncogene, 9, pp. 2071-2076
  • Buchan, J.R., Parker, R., Eukaryotic stress granules: the ins and outs of translation (2009) Mol Cell, 36, pp. 932-941
  • Erickson, S.L., Lykke-Andersen, J., Cytoplasmic mRNP granules at a glance (2011) J Cell Sci, 124, pp. 293-297
  • Thomas, M.G., Martinez Tosar, L.J., Loschi, M., Pasquini, J.M., Correale, J., Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes (2005) Mol Biol Cell, 16, pp. 405-420
  • Thomas, M.G., Tosar, L.J., Desbats, M.A., Leishman, C.C., Boccaccio, G.L., Mammalian Staufen 1 is recruited to stress granules and impairs their assembly (2009) J Cell Sci, 122, pp. 563-573
  • Rzeczkowski, K., Beuerlein, K., Muller, H., Dittrich-Breiholz, O., Schneider, H., c-Jun N-terminal kinase phosphorylates DCP1a to control formation of P bodies (2011) J Cell Biol, 194, pp. 581-596
  • Takahashi, S., Sakurai, K., Ebihara, A., Kajiho, H., Saito, K., RhoA activation participates in rearrangement of processing bodies and release of nucleated AU-rich mRNAs (2011) Nucleic Acids Res, 39, pp. 3446-3457
  • Baez, M.V., Boccaccio, G.L., Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules (2005) J Biol Chem, 280, pp. 43131-43140
  • Baez, M.V., Luchelli, L., Maschi, D., Habif, M., Pascual, M., Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation (2011) J Cell Biol, 195, pp. 1141-1157
  • Wilczynska, A., Aigueperse, C., Kress, M., Dautry, F., Weil, D., The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules (2005) J Cell Sci, 118, pp. 981-992
  • Loschi, M., Leishman, C.C., Berardone, N., Boccaccio, G.L., Dynein and kinesin regulate stress-granule and P-body dynamics (2009) J Cell Sci, 122, pp. 3973-3982
  • Sen, G.L., Blau, H.M., Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies (2005) Nat Cell Biol, 7, pp. 633-636
  • Dekanty, A., Romero, N.M., Bertolin, A.P., Thomas, M.G., Leishman, C.C., Drosophila genome-wide RNAi screen identifies multiple regulators of HIF-dependent transcription in hypoxia (2010) PLoS Genet, 6, pp. e1000994
  • Cougot, N., Bhattacharyya, S.N., Tapia-Arancibia, L., Bordonne, R., Filipowicz, W., Dendrites of mammalian neurons contain specialized P-body-like structures that respond to neuronal activation (2008) J Neurosci, 28, pp. 13793-13804
  • Vojtesek, B., Bartek, J., Midgley, C.A., Lane, D.P., An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53 (1992) J Immunol Methods, 151, pp. 237-244
  • Stephen, C.W., Lane, D.P., Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library (1992) J Mol Biol, 225, pp. 577-583
  • Wade-Evans, A., Jenkins, J.R., Precise epitope mapping of the murine transformation-associated protein, p53 (1985) EMBO J, 4, pp. 699-706
  • Ferraiuolo, M.A., Basak, S., Dostie, J., Murray, E.L., Schoenberg, D.R., A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay (2005) J Cell Biol, 170, pp. 913-924
  • Fenger-Gron, M., Fillman, C., Norrild, B., Lykke-Andersen, J., Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping (2005) Mol Cell, 20, pp. 905-915

Citas:

---------- APA ----------
Thomas, M.G., Luchelli, L., Pascual, M., Gottifredi, V. & Boccaccio, G.L. (2012) . A monoclonal antibody against p53 cross-reacts with processing bodies. PLoS ONE, 7(5).
http://dx.doi.org/10.1371/journal.pone.0036447
---------- CHICAGO ----------
Thomas, M.G., Luchelli, L., Pascual, M., Gottifredi, V., Boccaccio, G.L. "A monoclonal antibody against p53 cross-reacts with processing bodies" . PLoS ONE 7, no. 5 (2012).
http://dx.doi.org/10.1371/journal.pone.0036447
---------- MLA ----------
Thomas, M.G., Luchelli, L., Pascual, M., Gottifredi, V., Boccaccio, G.L. "A monoclonal antibody against p53 cross-reacts with processing bodies" . PLoS ONE, vol. 7, no. 5, 2012.
http://dx.doi.org/10.1371/journal.pone.0036447
---------- VANCOUVER ----------
Thomas, M.G., Luchelli, L., Pascual, M., Gottifredi, V., Boccaccio, G.L. A monoclonal antibody against p53 cross-reacts with processing bodies. PLoS ONE. 2012;7(5).
http://dx.doi.org/10.1371/journal.pone.0036447