Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The spontaneous and reversible formation of foci and filaments that contain proteins involved in different metabolic processes is common in both the nucleus and the cytoplasm. Stress granules (SGs) and processing bodies (PBs) belong to a novel family of cellular structures collectively known as mRNA silencing foci that harbour repressed mRNAs and their associated proteins. SGs and PBs are highly dynamic and they form upon stress and dissolve thus releasing the repressed mRNAs according to changes in cell physiology. In addition, aggregates containing abnormal proteins are frequent in neurodegenerative disorders. In spite of the growing relevance of these supramolecular aggregates to diverse cellular functions a reliable automated tool for their systematic analysis is lacking. Here we report a MATLAB Script termed BUHO for the high-throughput image analysis of cellular foci. We used BUHO to assess the number, size and distribution of distinct objects with minimal deviation from manually obtained parameters. BUHO successfully addressed the induction of both SGs and PBs in mammalian and insect cells exposed to different stress stimuli. We also used BUHO to assess the dynamics of specific mRNA-silencing foci termed Smaug 1 foci (S-foci) in primary neurons upon synaptic stimulation. Finally, we used BUHO to analyze the role of candidate genes on SG formation in an RNAi-based experiment. We found that FAK56D, GCN2 and PP1 govern SG formation. The role of PP1 is conserved in mammalian cells as judged by the effect of the PP1 inhibitor salubrinal, and involves dephosphorylation of the translation factor eIF2α. All these experiments were analyzed manually and by BUHO and the results differed in less than 5% of the average value. The automated analysis by this user-friendly method will allow high-throughput image processing in short times by providing a robust, flexible and reliable alternative to the laborious and sometimes unfeasible visual scrutiny. © 2012 Perez-Pepe et al.

Registro:

Documento: Artículo
Título:BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis
Autor:Perez-Pepe, M.; Slomiansky, V.; Loschi, M.; Luchelli, L.; Neme, M.; Thomas, M.G.; Boccaccio, G.L.
Filiación:Fundación Instituto Leloir, Buenos Aires, Argentina
Instituto de Investigaciones Bioquímicas Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:focal adhesion kinase; focal adhesion kinase 56D; initiation factor 2alpha; messenger RNA; phosphoprotein phosphatase 1; transcription factor; translation initiation factor 2alpha; unclassified drug; analytic method; article; BUHO; cell function; cell granule; cell size; cell stimulation; cell stress; cell structure; cellular distribution; gene silencing; image analysis; image processing; information processing; insect cell; mammal cell; molecular dynamics; molecular imaging; processing body; protein phosphorylation; RNA interference; stress granule; synapse; Algorithms; Animals; Drosophila melanogaster; Image Processing, Computer-Assisted; Molecular Imaging; Organelles; Oxidative Stress; RNA Interference; RNA, Messenger; Software; Synapses; Time Factors; Hexapoda; Mammalia
Año:2012
Volumen:7
Número:12
DOI: http://dx.doi.org/10.1371/journal.pone.0051495
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:RNA, Messenger
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n12_p_PerezPepe.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n12_p_PerezPepe

Referencias:

  • Thomas, M.G., Loschi, M., Desbats, M.A., Boccaccio, G.L., RNA granules: the good, the bad and the ugly (2011) Cell Signal, 23, pp. 324-334
  • Brengues, M., Teixeira, D., Parker, R., Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies (2005) Science, 310, pp. 486-489
  • Buchan, J.R., Yoon, J.H., Parker, R., Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae (2011) J Cell Sci, 124, pp. 228-239
  • Buchan, J.R., Nissan, T., Parker, R., Analyzing P-bodies and stress granules in Saccharomyces cerevisiae (2010) Methods Enzymol, 470, pp. 619-640
  • Aizer, A., Brody, Y., Ler, L.W., Sonenberg, N., Singer, R.H., The dynamics of mammalian P body transport, assembly, and disassembly in vivo (2008) Mol Biol Cell, 19, pp. 4154-4166
  • Kedersha, N., Tisdale, S., Hickman, T., Anderson, P., Real-time and quantitative imaging of mammalian stress granules and processing bodies (2008) Methods Enzymol, 448, pp. 521-552
  • Takahara, T., Maeda, T., Transient Sequestration of TORC1 into Stress Granules during Heat Stress (2012) Mol Cell, 47, pp. 242-252
  • Aragon, T., van Anken, E., Pincus, D., Serafimova, I.M., Korennykh, A.V., Messenger RNA targeting to endoplasmic reticulum stress signalling sites (2009) Nature, 457, pp. 736-740
  • Gaillard, H., Aguilera, A., A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation (2008) Mol Biol Cell, 19, pp. 4980-4992
  • Andersen, P.L., Xu, F., Ziola, B., McGregor, W.G., Xiao, W., Sequential assembly of translesion DNA polymerases at UV-induced DNA damage sites (2011) Mol Biol Cell, 22, pp. 2373-2383
  • Leonhardt, H., Rahn, H.P., Weinzierl, P., Sporbert, A., Cremer, T., Dynamics of DNA replication factories in living cells (2000) J Cell Biol, 149, pp. 271-280
  • Solomon, D.A., Cardoso, M.C., Knudsen, E.S., Dynamic targeting of the replication machinery to sites of DNA damage (2004) J Cell Biol, 166, pp. 455-463
  • Soria, G., Speroni, J., Podhajcer, O.L., Prives, C., Gottifredi, V., p21 differentially regulates DNA replication and DNA-repair-associated processes after UV irradiation (2008) J Cell Sci, 121, pp. 3271-3282
  • Baez, M.V., Luchelli, L., Maschi, D., Habif, M., Pascual, M., Smaug1 mRNA-silencing foci respond to NMDA and modulate synapse formation (2011) J Cell Biol, 195, pp. 1141-1157
  • Pascual, M., Luchelli, L., Habif, M., Boccaccio, G.L., Synaptic activity regulated mRNA-silencing foci for the fine tuning of local protein synthesis at the synapse (2012) Communicative & Integrative Biology, 5, p. 4
  • Campbell, S.G., Ashe, M.P., Localization of the translational guanine nucleotide exchange factor eIF2B: a common theme for GEFs? (2006) Cell Cycle, 5, pp. 678-680
  • Campbell, S.G., Hoyle, N.P., Ashe, M.P., Dynamic cycling of eIF2 through a large eIF2B-containing cytoplasmic body: implications for translation control (2005) J Cell Biol, 170, pp. 925-934
  • Taylor, E.J., Campbell, S.G., Griffiths, C.D., Reid, P.J., Slaven, J.W., Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body (2010) Mol Biol Cell, 21, pp. 2202-2216
  • An, S., Kumar, R., Sheets, E.D., Benkovic, S.J., Reversible compartmentalization of de novo purine biosynthetic complexes in living cells (2008) Science, 320, pp. 103-106
  • Narayanaswamy, R., Levy, M., Tsechansky, M., Stovall, G.M., O'Connell, J.D., Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation (2009) Proc Natl Acad Sci U S A, 106, pp. 10147-10152
  • An, S., Deng, Y., Tomsho, J.W., Kyoung, M., Benkovic, S.J., Microtubule-assisted mechanism for functional metabolic macromolecular complex formation (2010) Proc Natl Acad Sci U S A, 107, pp. 12872-12876
  • Noree, C., Sato, B.K., Broyer, R.M., Wilhelm, J.E., Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster (2010) J Cell Biol, 190, pp. 541-551
  • Walther, T.C., Brickner, J.H., Aguilar, P.S., Bernales, S., Pantoja, C., Eisosomes mark static sites of endocytosis (2006) Nature, 439, pp. 998-1003
  • Mao, Y.S., Zhang, B., Spector, D.L., Biogenesis and function of nuclear bodies (2011) Trends Genet, 27, pp. 295-306
  • White, J.P., Lloyd, R.E., Regulation of stress granules in virus systems (2012) Trends Microbiol
  • Beckham, C.J., Parker, R., P bodies, stress granules, and viral life cycles (2008) Cell Host Microbe, 3, pp. 206-212
  • Raaben, M., Groot Koerkamp, M.J., Rottier, P.J., de Haan, C.A., Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies (2007) Cell Microbiol, 9, pp. 2218-2229
  • Colombrita, C., Zennaro, E., Fallini, C., Weber, M., Sommacal, A., TDP-43 is recruited to stress granules in conditions of oxidative insult (2009) J Neurochem, 111, pp. 1051-1061
  • Dormann, D., Rodde, R., Edbauer, D., Bentmann, E., Fischer, I., ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import (2010) Embo J
  • Hua, Y., Zhou, J., Survival motor neuron protein facilitates assembly of stress granules (2004) FEBS Lett, 572, pp. 69-74
  • Mazroui, R., Huot, M.E., Tremblay, S., Filion, C., Labelle, Y., Trapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression (2002) Hum Mol Genet, 11, pp. 3007-3017
  • Ohn, T., Kedersha, N., Hickman, T., Tisdale, S., Anderson, P., A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly (2008) Nat Cell Biol, 10, pp. 1224-1231
  • Loschi, M., Leishman, C.C., Berardone, N., Boccaccio, G.L., Dynein and kinesin regulate stress-granule and P-body dynamics (2009) J Cell Sci, 122, pp. 3973-3982
  • Tsai, N.P., Ho, P.C., Wei, L.N., Regulation of stress granule dynamics by Grb7 and FAK signalling pathway (2008) Embo J, 27, pp. 715-726
  • Anderson, P., Kedersha, N., Visibly stressed: the role of eIF2, TIA-1, and stress granules in protein translation (2002) Cell Stress Chaperones, 7, pp. 213-221
  • Moreno, J.A., Radford, H., Peretti, D., Steinert, J.R., Verity, N., Sustained translational repression by eIF2[agr]-P mediates prion neurodegeneration (2012) Nature Advance Online Publication
  • Thomas, M.G., Tosar, L.J., Desbats, M.A., Leishman, C.C., Boccaccio, G.L., Mammalian Staufen 1 is recruited to stress granules and impairs their assembly (2009) J Cell Sci, 122, pp. 563-573
  • Thomas, M.G., Luchelli, L., Pascual, M., Gottifredi, V., Boccaccio, G.L., A monoclonal antibody against p53 cross-reacts with processing bodies (2012) PLoS ONE, 7, pp. e36447
  • Thomas, M.G., Martinez Tosar, L.J., Loschi, M., Pasquini, J.M., Correale, J., Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes (2005) Mol Biol Cell, 16, pp. 405-420
  • Baez, M.V., Boccaccio, G.L., Mammalian Smaug is a translational repressor that forms cytoplasmic foci similar to stress granules (2005) J Biol Chem, 280, pp. 43131-43140

Citas:

---------- APA ----------
Perez-Pepe, M., Slomiansky, V., Loschi, M., Luchelli, L., Neme, M., Thomas, M.G. & Boccaccio, G.L. (2012) . BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis. PLoS ONE, 7(12).
http://dx.doi.org/10.1371/journal.pone.0051495
---------- CHICAGO ----------
Perez-Pepe, M., Slomiansky, V., Loschi, M., Luchelli, L., Neme, M., Thomas, M.G., et al. "BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis" . PLoS ONE 7, no. 12 (2012).
http://dx.doi.org/10.1371/journal.pone.0051495
---------- MLA ----------
Perez-Pepe, M., Slomiansky, V., Loschi, M., Luchelli, L., Neme, M., Thomas, M.G., et al. "BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis" . PLoS ONE, vol. 7, no. 12, 2012.
http://dx.doi.org/10.1371/journal.pone.0051495
---------- VANCOUVER ----------
Perez-Pepe, M., Slomiansky, V., Loschi, M., Luchelli, L., Neme, M., Thomas, M.G., et al. BUHO: A MATLAB Script for the Study of Stress Granules and Processing Bodies by High-Throughput Image Analysis. PLoS ONE. 2012;7(12).
http://dx.doi.org/10.1371/journal.pone.0051495