Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Chromatin structure is an important factor in the functional coupling between transcription and mRNA processing, not only by regulating alternative splicing events, but also by contributing to exon recognition during constitutive splicing. We observed that depolarization of neuroblastoma cell membrane potential, which triggers general histone acetylation and regulates alternative splicing, causes a concentration of SR proteins in nuclear speckles. This prompted us to analyze the effect of chromatin structure on splicing factor distribution and dynamics. Here, we show that induction of histone hyper-acetylation results in the accumulation in speckles of multiple splicing factors in different cell types. In addition, a similar effect is observed after depletion of the heterochromatic protein HP1α, associated with repressive chromatin. We used advanced imaging approaches to analyze in detail both the structural organization of the speckle compartment and nuclear distribution of splicing factors, as well as studying direct interactions between splicing factors and their association with chromatin in vivo. The results support a model where perturbation of normal chromatin structure decreases the recruitment efficiency of splicing factors to nascent RNAs, thus causing their accumulation in speckles, which buffer the amount of free molecules in the nucleoplasm. To test this, we analyzed the recruitment of the general splicing factor U2AF65 to nascent RNAs by iCLIP technique, as a way to monitor early spliceosome assembly. We demonstrate that indeed histone hyper-acetylation decreases recruitment of U2AF65 to bulk 3′ splice sites, coincident with the change in its localization. In addition, prior to the maximum accumulation in speckles, ~20% of genes already show a tendency to decreased binding, while U2AF65 seems to increase its binding to the speckle-located ncRNA MALAT1. All together, the combined imaging and biochemical approaches support a model where chromatin structure is essential for efficient co-transcriptional recruitment of general and regulatory splicing factors to pre-mRNA. © 2012 Schor et al.

Registro:

Documento: Artículo
Título:Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors
Autor:Schor, I.E.; Llères, D.; Risso, G.J.; Pawellek, A.; Ule, J.; Lamond, A.I.; Kornblihtt, A.R.
Filiación:Lab. de Fisiologia y Biologia Molecular, Departamento de Fisiologia, Biologia Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Inst. de Fisiologia, Bio. Molecular y Neurociencias, Consejo Nat. de Investigaciones Cientificas, Buenos Aires, Argentina
Dundee Centre for Gene Regulation and Expression, University of Dundee, Dundee, Scotland, United Kingdom
Laboratory of Molecular Biology, Medical Research Council, Cambridge, England, United Kingdom
Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
Institut de Génétique Moléculaire de Montpellier, Centre national de la recherche scientifique, Université Montpellier I and II, Montpellier, France
Palabras clave:enhanced green fluorescent protein; heterochromatin protein 1; heterochromatin protein 1alpha; histone H3; histone H4; messenger RNA; nuclear protein; protein SRSF1; protein SRSF2; trichostatin A; unclassified drug; untranslated RNA; article; bioaccumulation; cell nucleus; cellular distribution; chromatin structure; controlled study; gene control; gene function; histone acetylation; human; human cell; MALAT1 gene; molecular imaging; molecular model; NCAM gene; Neat1 gene; protein determination; protein function; protein RNA binding; regulatory mechanism; RNA analysis; RNA gene; RNA splicing; spliceosome; structure analysis; Acetylation; Alternative Splicing; Animals; Cell Line; Cell Nucleus; Chromatin; Histones; Humans; Hydroxamic Acids; Membrane Potentials; Models, Biological; Protein Binding; Protein Transport; Ribonucleoproteins; RNA Precursors; RNA Splice Sites; RNA Splicing; RNA, Long Untranslated
Año:2012
Volumen:7
Número:11
DOI: http://dx.doi.org/10.1371/journal.pone.0048084
Título revista:PLoS ONE
Título revista abreviado:PLoS ONE
ISSN:19326203
CAS:trichostatin A, 58880-19-6; Chromatin; Histones; Hydroxamic Acids; RNA Precursors; RNA Splice Sites; RNA, Long Untranslated; Ribonucleoproteins; trichostatin A, 3X2S926L3Z
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_19326203_v7_n11_p_Schor.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_19326203_v7_n11_p_Schor

Referencias:

  • Bentley, D., Coupling RNA polymerase II transcription with pre-mRNA processing (1999) Curr Opin Cell Biol, 11, pp. 347-351
  • Cramer, P., Srebrow, A., Kadener, S., Werbajh, S., de la Mata, M., Coordination between transcription and pre-mRNA processing (2001) FEBS Lett, 498, pp. 179-182
  • Kornblihtt, A.R., Coupling transcription and alternative splicing (2007) Adv Exp Med Biol, 623, pp. 175-189
  • Maniatis, T., Reed, R., An extensive network of coupling among gene expression machines (2002) Nature, 416, pp. 499-506
  • Bentley, D.L., Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors (2005) Curr Opin Cell Biol, 17, pp. 251-256
  • Neugebauer, K.M., On the importance of being co-transcriptional (2002) J Cell Sci, 115, pp. 3865-3871
  • Gornemann, J., Kotovic, K.M., Hujer, K., Neugebauer, K.M., Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex (2005) Mol Cell, 19, pp. 53-63
  • Listerman, I., Sapra, A.K., Neugebauer, K.M., Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells (2006) Nat Struct Mol Biol, 13, pp. 815-822
  • Lacadie, S.A., Rosbash, M., Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5′ss base pairing in yeast (2005) Mol Cell, 19, pp. 65-75
  • Shepard, P.J., Hertel, K.J., Conserved RNA secondary structures promote alternative splicing (2008) RNA, 14, pp. 1463-1469
  • Lev-Maor, G., Goren, A., Sela, N., Kim, E., Keren, H., The "alternative" choice of constitutive exons throughout evolution (2007) PLoS Genet, 3, pp. e203
  • Barash, Y., Calarco, J.A., Gao, W., Pan, Q., Wang, X., Deciphering the splicing code (2010) Nature, 465, pp. 53-59
  • Wang, J., Smith, P.J., Krainer, A.R., Zhang, M.Q., Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes (2005) Nucleic Acids Res, 33, pp. 5053-5062
  • Zhang, X.H., Chasin, L.A., Computational definition of sequence motifs governing constitutive exon splicing (2004) Genes Dev, 18, pp. 1241-1250
  • Misteli, T., Beyond the sequence: cellular organization of genome function (2007) Cell, 128, pp. 787-800
  • Misteli, T., Concepts in nuclear architecture (2005) Bioessays, 27, pp. 477-487
  • Lamond, A.I., Spector, D.L., Nuclear speckles: a model for nuclear organelles (2003) Nat Rev Mol Cell Biol, 4, pp. 605-612
  • Spector, D.L., Schrier, W.H., Busch, H., Immunoelectron microscopic localization of snRNPs (1983) Biol Cell, 49, pp. 1-10
  • Misteli, T., Caceres, J.F., Spector, D.L., The dynamics of a pre-mRNA splicing factor in living cells (1997) Nature, 387, pp. 523-527
  • O'Keefe, R.T., Mayeda, A., Sadowski, C.L., Krainer, A.R., Spector, D.L., Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors (1994) J Cell Biol, 124, pp. 249-260
  • Huang, S., Spector, D.L., Nascent pre-mRNA transcripts are associated with nuclear regions enriched in splicing factors (1991) Genes Dev, 5, pp. 2288-2302
  • Smith, K.P., Moen, P.T., Wydner, K.L., Coleman, J.R., Lawrence, J.B., Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific (1999) J Cell Biol, 144, pp. 617-629
  • Carmo-Fonseca, M., Rino, J., RNA seeds nuclear bodies (2011) Nat Cell Biol, 13, pp. 110-112
  • Bond, C.S., Fox, A.H., Paraspeckles: nuclear bodies built on long noncoding RNA (2009) J Cell Biol, 186, pp. 637-644
  • Tripathi, V., Ellis, J.D., Shen, Z., Song, D.Y., Pan, Q., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation (2010) Mol Cell, 39, pp. 925-938
  • Bernard, D., Prasanth, K.V., Tripathi, V., Colasse, S., Nakamura, T., A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression (2010) EMBO J, 29, pp. 3082-3093
  • Schor, I.E., Allo, M., Kornblihtt, A.R., Intragenic chromatin modifications: A new layer in alternative splicing regulation (2010) Epigenetics, 5
  • Tilgner, H., Guigo, R., From chromatin to splicing: RNA-processing as a total artwork (2010) Epigenetics, 5
  • Luco, R.F., Allo, M., Schor, I.E., Kornblihtt, A.R., Misteli, T., Epigenetics in alternative pre-mRNA splicing (2011) Cell, 144, pp. 16-26
  • Allemand, E., Batsche, E., Muchardt, C., Splicing, transcription, and chromatin: a menage a trois (2008) Curr Opin Genet Dev, 18, pp. 145-151
  • Adami, G., Babiss, L.E., DNA template effect on RNA splicing: two copies of the same gene in the same nucleus are processed differently (1991) EMBO J, 10, pp. 3457-3465
  • Allo, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., Control of alternative splicing through siRNA-mediated transcriptional gene silencing (2009) Nat Struct Mol Biol, 16, pp. 717-724
  • Batsche, E., Yaniv, M., Muchardt, C., The human SWI/SNF subunit Brm is a regulator of alternative splicing (2006) Nat Struct Mol Biol, 13, pp. 22-29
  • Kadener, S., Cramer, P., Nogues, G., Cazalla, D., de la Mata, M., Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing (2001) EMBO J, 20, pp. 5759-5768
  • Schor, I.E., Rascovan, N., Pelisch, F., Allo, M., Kornblihtt, A.R., Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing (2009) Proc Natl Acad Sci U S A, 106, pp. 4325-4330
  • Luco, R.F., Pan, Q., Tominaga, K., Blencowe, B.J., Pereira-Smith, O.M., Regulation of alternative splicing by histone modifications (2010) Science, 327, pp. 996-1000
  • Sims 3rd, R.J., Millhouse, S., Chen, C.F., Lewis, B.A., Erdjument-Bromage, H., Recognition of trimethylated histone H3 lysine 4 facilitates the recruitment of transcription postinitiation factors and pre-mRNA splicing (2007) Mol Cell, 28, pp. 665-676
  • Schwartz, S., Meshorer, E., Ast, G., Chromatin organization marks exon-intron structure (2009) Nat Struct Mol Biol, 16, pp. 990-995
  • Tilgner, H., Nikolaou, C., Althammer, S., Sammeth, M., Beato, M., Nucleosome positioning as a determinant of exon recognition (2009) Nat Struct Mol Biol, 16, pp. 996-1001
  • Andersson, R., Enroth, S., Rada-Iglesias, A., Wadelius, C., Komorowski, J., Nucleosomes are well positioned in exons and carry characteristic histone modifications (2009) Genome Res, 19, pp. 1732-1741
  • Nahkuri, S., Taft, R.J., Mattick, J.S., Nucleosomes are preferentially positioned at exons in somatic and sperm cells (2009) Cell Cycle, 8, pp. 3420-3424
  • Spies, N., Nielsen, C.B., Padgett, R.A., Burge, C.B., Biased chromatin signatures around polyadenylation sites and exons (2009) Mol Cell, 36, pp. 245-254
  • Edmond, V., Moysan, E., Khochbin, S., Matthias, P., Brambilla, C., Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin (2011) EMBO J, 30, pp. 510-523
  • Chao, S.H., Price, D.H., Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo (2001) J Biol Chem, 276, pp. 31793-31799
  • Lleres, D., James, J., Swift, S., Norman, D.G., Lamond, A.I., Quantitative analysis of chromatin compaction in living cells using FLIM-FRET (2009) J Cell Biol, 187, pp. 481-496
  • Saint-Andre, V., Batsche, E., Rachez, C., Muchardt, C., Histone H3 lysine 9 trimethylation and HP1gamma favor inclusion of alternative exons (2011) Nat Struct Mol Biol, 18, pp. 337-344
  • Rino, J., Carvalho, T., Braga, J., Desterro, J.M., Luhrmann, R., A stochastic view of spliceosome assembly and recycling in the nucleus (2007) PLoS Comput Biol, 3, pp. 2019-2031
  • Huranova, M., Ivani, I., Benda, A., Poser, I., Brody, Y., The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells (2010) J Cell Biol, 191, pp. 75-86
  • Loomis, R.J., Naoe, Y., Parker, J.B., Savic, V., Bozovsky, M.R., Chromatin binding of SRp20 and ASF/SF2 and dissociation from mitotic chromosomes is modulated by histone H3 serine 10 phosphorylation (2009) Mol Cell, 33, pp. 450-461
  • Lleres, D., Swift, S., Lamond, A.I., Detecting protein-protein interactions in vivo with FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM) (2007) Curr Protoc Cytom Chapter, 12, p. 10. , Unit12
  • Ellis, J.D., Lleres, D., Denegri, M., Lamond, A.I., Caceres, J.F., Spatial mapping of splicing factor complexes involved in exon and intron definition (2008) J Cell Biol, 181, pp. 921-934
  • Sapra, A.K., Anko, M.L., Grishina, I., Lorenz, M., Pabis, M., SR protein family members display diverse activities in the formation of nascent and mature mRNPs in vivo (2009) Mol Cell, 34, pp. 179-190
  • Bjork, P., Jin, S., Zhao, J., Singh, O.P., Persson, J.O., Specific combinations of SR proteins associate with single pre-messenger RNAs in vivo and contribute different functions (2009) J Cell Biol, 184, pp. 555-568
  • Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution (2010) Nat Struct Mol Biol, 17, pp. 909-915
  • Tollervey, J.R., Curk, T., Rogelj, B., Briese, M., Cereda, M., Characterizing the RNA targets and position-dependent splicing regulation by TDP-43 (2011) Nat Neurosci, 14, pp. 452-458
  • Fox, A.H., Lam, Y.W., Leung, A.K., Lyon, C.E., Andersen, J., Paraspeckles: a novel nuclear domain (2002) Curr Biol, 12, pp. 13-25
  • de la Mata, M., Alonso, C.R., Kadener, S., Fededa, J.P., Blaustein, M., A slow RNA polymerase II affects alternative splicing in vivo (2003) Mol Cell, 12, pp. 525-532
  • Hnilicova, J., Hozeifi, S., Duskova, E., Icha, J., Tomankova, T., Histone deacetylase activity modulates alternative splicing (2011) PLoS One, 6, pp. e16727
  • Shaner, N.C., Campbell, R.E., Steinbach, P.A., Giepmans, B.N., Palmer, A.E., Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein (2004) Nat Biotechnol, 22, pp. 1567-1572
  • Sleeman, J., Lyon, C.E., Platani, M., Kreivi, J.P., Lamond, A.I., Dynamic interactions between splicing snRNPs, coiled bodies and nucleoli revealed using snRNP protein fusions to the green fluorescent protein (1998) Exp Cell Res, 243, pp. 290-304
  • Caceres, J.F., Misteli, T., Screaton, G.R., Spector, D.L., Krainer, A.R., Role of the modular domains of SR proteins in subnuclear localization and alternative splicing specificity (1997) J Cell Biol, 138, pp. 225-238
  • Chusainow, J., Ajuh, P.M., Trinkle-Mulcahy, L., Sleeman, J.E., Ellenberg, J., FRET analyses of the U2AF complex localize the U2AF35/U2AF65 interaction in vivo and reveal a novel self-interaction of U2AF35 (2005) RNA, 11, pp. 1201-1214
  • Serrano, A., Rodriguez-Corsino, M., Losada, A., Heterochromatin protein 1 (HP1) proteins do not drive pericentromeric cohesin enrichment in human cells (2009) PLoS One, 4, pp. e5118
  • Schermelleh, L., Carlton, P.M., Haase, S., Shao, L., Winoto, L., Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy (2008) Science, 320, pp. 1332-1336
  • Gustafsson, M.G., Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy (2000) J Microsc, 198, pp. 82-87

Citas:

---------- APA ----------
Schor, I.E., Llères, D., Risso, G.J., Pawellek, A., Ule, J., Lamond, A.I. & Kornblihtt, A.R. (2012) . Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE, 7(11).
http://dx.doi.org/10.1371/journal.pone.0048084
---------- CHICAGO ----------
Schor, I.E., Llères, D., Risso, G.J., Pawellek, A., Ule, J., Lamond, A.I., et al. "Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors" . PLoS ONE 7, no. 11 (2012).
http://dx.doi.org/10.1371/journal.pone.0048084
---------- MLA ----------
Schor, I.E., Llères, D., Risso, G.J., Pawellek, A., Ule, J., Lamond, A.I., et al. "Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors" . PLoS ONE, vol. 7, no. 11, 2012.
http://dx.doi.org/10.1371/journal.pone.0048084
---------- VANCOUVER ----------
Schor, I.E., Llères, D., Risso, G.J., Pawellek, A., Ule, J., Lamond, A.I., et al. Perturbation of Chromatin Structure Globally Affects Localization and Recruitment of Splicing Factors. PLoS ONE. 2012;7(11).
http://dx.doi.org/10.1371/journal.pone.0048084